bookboon.com

Essentials of Statistics

David Brink

Download free books at

David Brink

Statistics

Statistics

© 2010 David Brink \& Ventus Publishing ApS ISBN 978-87-7681-408-3

Contents

1 Preface 11
2 Basic concepts of probability theory 12
2.1 Probability space, probability function, sample space, event 12
2.2 Conditional probability 12
2.3 Independent events 14
2.4 The Inclusion-Exclusion Formula 14
2.5 Binomial coefficients 16
2.6 Multinomial coefficients 17
3 Random variables 18
3.1 Random variables, definition 18
3.2 The distribution function 18
3.3 Discrete random variables, point probabilities 19
3.4 Continuous random variables, density function 20
3.5 Continuous random variables, distribution function 20
3.6 Independent random variables 20
3.7 Random vector, simultaneous density, and distribution function 21

4 Expected value and variance 21
4.1 Expected value of random variables 21
4.2 Variance and standard deviation of random variables 22
4.3 Example (computation of expected value, variance, and standard deviation) 23
4.4 Estimation of expected value μ and standard deviation σ by eye 23
4.5 Addition and multiplication formulae for expected value and variance 24
4.6 Covariance and correlation coefficient 24
5 The Law of Large Numbers 26
5.1 Chebyshev's Inequality 26
5.2 The Law of Large Numbers 26
5.3 The Central Limit Theorem 26
5.4 Example (distribution functions converge to Φ) 27
6 Descriptive statistics 27
6.1 Median and quartiles 27
6.2 Mean value 28
6.3 Empirical variance and empirical standard deviation 28
6.4 Empirical covariance and empirical correlation coefficient 29
7 Statistical hypothesis testing 29
7.1 Null hypothesis and alternative hypothesis 29
7.2 Significance probability and significance level 29

You're full of energy and ideas. And that's just what we are looking for.

Looking for a career where your ideas could really make a difference? UBS's Graduate Programme and internships are a chance for you to experience for yourself what it's like to be part of a global team that rewards your input and believes in succeeding together.

Wherever you are in your academic career, make your future a part of ours by visiting www.ubs.com/graduates.
7.3 Errors of type I and II 30
7.4 Example 30
8 The binomial distribution $\operatorname{Bin}(n, p)$ 30
8.1 Parameters 30
8.2 Description 31
8.3 Point probabilities 31
8.4 Expected value and variance 32
8.5 Significance probabilities for tests in the binomial distribution 32
8.6 The normal approximation to the binomial distribution 32
8.7 Estimators 33
8.8 Confidence intervals 34
9 The Poisson distribution $\operatorname{Pois}(\lambda)$ 35
9.1 Parameters 35
9.2 Description 35
9.3 Point probabilities 35
9.4 Expected value and variance 35
9.5 Addition formula 36
9.6 Significance probabilities for tests in the Poisson distribution 36
9.7 Example (significant increase in sale of Skodas) 36
9.8 The binomial approximation to the Poisson distribution 37
9.9 The normal approximation to the Poisson distribution 37

9.10 Example (significant decrease in number of complaints) 38
9.11 Estimators 38
9.12 Confidence intervals 39
10 The geometrical distribution $\operatorname{Geo}(p)$ 39
10.1 Parameters 39
10.2 Description 39
10.3 Point probabilities and tail probabilities 39
10.4 Expected value and variance 41
11 The hypergeometrical distribution $\mathbf{H G}(n, r, N)$ 41
11.1 Parameters 41
11.2 Description 41
11.3 Point probabilities and tail probabilities 41
11.4 Expected value and variance 42
11.5 The binomial approximation to the hypergeometrical distribution 42
11.6 The normal approximation to the hypergeometrical distribution 42

Download free ebooks at bookboon.com
12 The multinomial distribution $\operatorname{Mult}\left(n, p_{1}, \ldots, p_{r}\right)$ 43
12.1 Parameters 43
12.2 Description 43
12.3 Point probabilities 44
12.4 Estimators 44
13 The negative binomial distribution $\mathbf{N B}(n, p)$ 44
13.1 Parameters 44
13.2 Description 45
13.3 Point probabilities 45
13.4 Expected value and variance 45
13.5 Estimators 45
14 The exponential distribution $\operatorname{Exp}(\lambda)$ 45
14.1 Parameters 45
14.2 Description 45
14.3 Density and distribution function 46
14.4 Expected value and variance 46
15 The normal distribution 46
15.1 Parameters 46
15.2 Description 47
15.3 Density and distribution function 47
15.4 The standard normal distribution 47
15.5 Properties of Φ 48
15.6 Estimation of the expected value μ 48
15.7 Estimation of the variance σ^{2} 48
15.8 Confidence intervals for the expected value μ 49
15.9 Confidence intervals for the variance σ^{2} and the standard deviation σ 50
15.10Addition formula 50
16 Distributions connected with the normal distribution 50
16.1 The χ^{2} distribution 50
16.2 Student's t distribution 51
16.3 Fisher's F distribution 52
17 Tests in the normal distribution 53
17.1 One sample, known variance, $\mathbf{H}_{0}: \mu=\mu_{0}$ 53
17.2 One sample, unknown variance, $\mathbf{H}_{0}: \mu=\mu_{0}$ (Student's t test) 53
17.3 One sample, unknown expected value, $\mathbf{H}_{0}: \sigma^{2}=\sigma_{0}^{2}$ 54
17.4 Example 56
17.5 Two samples, known variances, $\mathbf{H}_{0}: \mu_{1}=\mu_{2}$ 56
17.6 Two samples, unknown variances, $\mathbf{H}_{0}: \mu_{1}=\mu_{2}$ (Fisher-Behrens) 57
17.7 Two samples, unknown expected values, $\mathbf{H}_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ 57
17.8 Two samples, unknown common variance, $\mathbf{H}_{0}: \mu_{1}=\mu_{2}$ 58
17.9 Example (comparison of two expected values) 59
18 Analysis of variance (ANOVA) 60
18.1 Aim and motivation 60
$18.2 k$ samples, unknown common variance, $\mathbf{H}_{0}: \mu_{1}=\cdots=\mu_{k}$ 60
18.3 Two examples (comparison of mean values from three samples) 61
19 The chi-squared test (or χ^{2} test) 63
$19.1 \chi^{2}$ test for equality of distribution 63
19.2 The assumption of normal distribution 65
19.3 Standardized residuals 65
19.4 Example (women with five children) 65
19.5 Example (election) 67
19.6 Example (deaths in the Prussian cavalry) 68
20 Contingency tables 70
20.1 Definition, method 70
20.2 Standardized residuals 71
20.3 Example (students' political orientation) 71
$20.4 \chi^{2}$ test for 2×2 tables 73
20.5 Fisher's exact test for 2×2 tables 73
20.6 Example (Fisher's exact test) 74
21 Distribution-free tests 74
21.1 Wilcoxon's test for one set of observations 75
21.2 Example 76
21.3 The normal approximation to Wilcoxon's test for one set of observations 77
21.4 Wilcoxon's test for two sets of observations 77
21.5 The normal approximation to Wilcoxon's test for two sets of observations 78
22 Linear regression 79
22.1 The model 79
22.2 Estimation of the parameters β_{0} and β_{1} 79
22.3 The distribution of the estimators 80
22.4 Predicted values \hat{y}_{i} and residuals \hat{e}_{i} 80
22.5 Estimation of the variance σ^{2} 80
22.6 Confidence intervals for the parameters β_{0} and β_{1} 80
22.7 The determination coefficient R^{2} 81
22.8 Predictions and prediction intervals 81
22.9 Overview of formulae 82
22.10Example 82
A Overview of discrete distributions 86
B Tables 87
B. 1 How to read the tables 87
B. 2 The standard normal distribution 89
B. 3 The χ^{2} distribution (values x with $F_{\chi^{2}}(x)=0.500$ etc.) 92
B. 4 Student's t distribution (values x with $F_{\text {Student }}(x)=0.600$ etc.) 94
B. 5 Fisher's F distribution (values x with $F_{\text {Fisher }}(x)=0.90$) 95
B. 6 Fisher's F distribution (values x with $F_{\text {Fisher }}(x)=0.95$) 96
B. 7 Fisher's F distribution (values x with $F_{\text {Fisher }}(x)=0.99$) 97
B. 8 Wilcoxon's test for one set of observations 98
B. 9 Wilcoxon's test for two sets of observations, $\alpha=5 \%$ 99
C Explanation of symbols 100
D Index 102

1 Preface

Many students find that the obligatory Statistics course comes as a shock. The set textbook is difficult, the curriculum is vast, and secondary-school maths feels infinitely far away.
"Statistics" offers friendly instruction on the core areas of these subjects. The focus is overview. And the numerous examples give the reader a "recipe" for solving all the common types of exercise. You can download this book free of charge.

2 Basic concepts of probability theory

2.1 Probability space, probability function, sample space, event

A probability space is a pair (Ω, P) consisting of a set Ω and a function P which assigns to each subset A of Ω a real number $P(A)$ in the interval $[0,1]$. Moreover, the following two axioms are required to hold:

1. $P(\Omega)=1$,
2. $P\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right)$ if A_{1}, A_{2}, \ldots is a sequence of pairwise disjoint subsets of Ω.

The set Ω is called a sample space. The elements $\omega \in \Omega$ are called sample points and the subsets $A \subseteq \Omega$ are called events. The function P is called a probability function. For an event A, the real number $P(A)$ is called the probability of A.

From the two axioms the following consequences can be deduced:
3. $P(\varnothing)=0$,
4. $P(A \backslash B)=P(A)-P(B)$ if $B \subseteq A$,
5. $P(\complement A)=1-P(A)$,
6. $P(A) \geqq P(B)$ if $B \subseteq A$,
7. $P\left(A_{1} \cup \cdots \cup A_{n}\right)=P\left(A_{1}\right)+\cdots+P\left(A_{n}\right)$ if A_{1}, \ldots, A_{n} are pairwise disjoint events,
8. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$ for arbitrary events A and B.

Example. Consider the set $\Omega=\{1,2,3,4,5,6\}$. For each subset A of Ω, define

$$
P(A)=\frac{\# A}{6}
$$

where $\# A$ is the number of elements in A. Then the pair (Ω, P) is a probability space. One can view this probability space as a model for the for the situation "throw of a dice".

EXAMPLE. Now consider the set $\Omega=\{1,2,3,4,5,6\} \times\{1,2,3,4,5,6\}$. For each subset A of Ω, define

$$
P(A)=\frac{\# A}{36}
$$

Now the probability space (Ω, P) is a model for the situation "throw of two dice". The subset

$$
A=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}
$$

is the event "a pair".

2.2 Conditional probability

For two events A and B the conditional probability of A given B is defined as

$$
P(A \mid B):=\frac{P(A \cap B)}{P(B)}
$$

We have the following theorem called computation of probability by division into possible causes: Suppose A_{1}, \ldots, A_{n} are pairwise disjoint events with $A_{1} \cup \cdots \cup A_{n}=\Omega$. For every event B it then holds that

$$
P(B)=P\left(A_{1}\right) \cdot P\left(B \mid A_{1}\right)+\cdots+P\left(A_{n}\right) \cdot P\left(B \mid A_{n}\right) .
$$

Example. In the French Open final, Nadal plays the winner of the semifinal between Federer and Davydenko. A bookmaker estimates that the probability of Federer winning the semifinal is 75%. The probability that Nadal can beat Federer is estimated to be 51%, whereas the probability that Nadal can beat Davydenko is estimated to be 80%. The bookmaker therefore computes the probability that Nadal wins the French Open, using division into possible causes, as follows:

$$
\begin{aligned}
P(\text { Nadal wins the final })= & P(\text { Federer wins the semifinal }) \times \\
& P(\text { Nadal wins the final } \mid \text { Federer wins the semifinal })+ \\
& P(\text { Davydenko wins the semifinal }) \times \\
& P(\text { Nadal wins the final } \mid \text { Davydenko wins the semifinal }) \\
= & 0.75 \cdot 0.51+0.25 \cdot 0.8 \\
= & 58.25 \%
\end{aligned}
$$

Download free ebooks at bookboon.com

2.3 Independent events

Two events A and B are called independent, if

$$
P(A \cap B)=P(A) \cdot P(B)
$$

Equivalent to this is the condition $P(A \mid B)=P(A)$, i.e. that the probability of A is the same as the conditional probability of A given B.

Remember: Two events are independent if the probability of one of them is not affected by knowing whether the other has occurred or not.

EXAMPLE. A red and a black dice are thrown. Consider the events
A : red dice shows 6 ,
B : black dice show 6 .
Since

$$
P(A \cap B)=\frac{1}{36}=\frac{1}{6} \cdot \frac{1}{6}=P(A) \cdot P(B)
$$

A and B are independent. The probability that the red dice shows 6 is not affected by knowing anything about the black dice.

Example. A red and a black dice are thrown. Consider the events
A : the red and the black dice show the same number,
B : the red and the black dice show a total of 10 .
Since

$$
P(A)=\frac{1}{6}, \text { but } P(A \mid B)=\frac{1}{3}
$$

A and B are not independent. The probability of two of a kind increases if one knows that the sum of the dice is 10 .

2.4 The Inclusion-Exclusion Formula

Formula $\mathbf{8}$ on page 12 has the following generalization to three events A, B, C :
$P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C)-P(B \cap C)+P(A \cap B \cap C)$.
This equality is called the Inclusion-Exclusion Formula for three events.

EXAMPLE. What is the probability of having at least one 6 in three throws with a dice? Let A_{1} be the event that we get a 6 in the first throw, and define A_{2} and A_{3} similarly. Then, our probability can be computed by inclusion-exclusion:

$$
\begin{aligned}
P= & P\left(A_{1} \cup A_{2} \cup A_{3}\right) \\
= & P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3}\right)-P\left(A_{1} \cap A_{2}\right)-P\left(A_{1} \cap A_{3}\right)-P\left(A_{2} \cap A_{3}\right) \\
& +P\left(A_{1} \cap A_{2} \cap A_{3}\right) \\
= & \frac{1}{6}+\frac{1}{6}+\frac{1}{6}-\frac{1}{6^{2}}-\frac{1}{6^{2}}-\frac{1}{6^{2}}+\frac{1}{6^{3}} \\
\approx & 41 \%
\end{aligned}
$$

The following generalization holds for n events $A_{1}, A_{2}, \ldots, A_{n}$ with union $A=A_{1} \cup \cdots \cup A_{n}$:

$$
P(A)=\sum_{i} P\left(A_{i}\right)-\sum_{i<j} P\left(A_{i} \cap A_{j}\right)+\sum_{i<j<k} P\left(A_{i} \cap A_{j} \cap A_{k}\right)-\cdots \pm P\left(A_{1} \cap \cdots \cap A_{n}\right) .
$$

This equality is called the Inclusion-Exclusion Formula for n events.

EXAMPLE. Pick five cards at random from an ordinary pack of cards. We wish to compute the probability $P(B)$ of the event B that all four suits appear among the 5 chosen cards.

For this purpose, let A_{1} be the event that none of the chosen cards are spades. Define A_{2}, A_{3}, and A_{4} similarly for hearts, diamonds, and clubs, respectively. Then

$$
\complement B=A_{1} \cup A_{2} \cup A_{3} \cup A_{4} .
$$

The Inclusion-Exclusion Formula now yields

$$
P(\complement B)=\sum_{i} P\left(A_{i}\right)-\sum_{i<j} P\left(A_{i} \cap A_{j}\right)+\sum_{i<j<k} P\left(A_{i} \cap A_{j} \cap A_{k}\right)-P\left(A_{1} \cap A_{2} \cap A_{3} \cap A_{4}\right),
$$

that is

$$
P(C B)=4 \cdot \frac{\binom{39}{5}}{\binom{52}{5}}-6 \cdot \frac{\binom{26}{5}}{\binom{52}{5}}+4 \cdot \frac{\binom{13}{5}}{\binom{52}{5}}-0 \approx 73.6 \%
$$

We thus obtain the probability

$$
P(B)=1-P(\complement B)=26.4 \%
$$

EXAMPLE. A school class contains n children. The teacher asks all the children to stand up and then sit down again on a random chair. Let us compute the probability $P(B)$ of the event B that each pupil ends up on a new chair.

We start by enumerating the pupils from 1 to n. For each i we define the event

$$
A_{i}: \text { pupil number } i \text { gets his or her old chair }
$$

Then

$$
\complement B=A_{1} \cup \cdots \cup A_{n} .
$$

Now $P(C B)$ can be computed by the Inclusion-Exclusion Formula for n events:

$$
P(\complement B)=\sum_{i} P\left(A_{i}\right)-\sum_{i<j} P\left(A_{i} \cap A_{j}\right)+\cdots \pm P\left(A_{1} \cap \cdots \cap A_{n}\right),
$$

thus

$$
\begin{aligned}
P(\complement B) & =\binom{n}{1} \frac{1}{n}-\binom{n}{2} \frac{1}{n(n-1)}+\cdots \pm\binom{ n}{n} \frac{1}{n!} \\
& =1-\frac{1}{2!}+\cdots \pm \frac{1}{n!}
\end{aligned}
$$

We conclude

$$
P(B)=1-P(\complement B)=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots \pm \frac{1}{n!}
$$

It is a surprising fact that this probability is more or less independent of $n: P(B)$ is very close to 37% for all $n \geq 4$.

2.5 Binomial coefficients

The binomial coefficient $\binom{n}{k}$ (read as " n over k ") is defined as

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{1 \cdot 2 \cdot 3 \cdots n}{1 \cdot 2 \cdots k \cdot 1 \cdot 2 \cdots(n-k)}
$$

for integers n and k with $0 \leqq k \leqq n$. (Recall the convention $0!=1$.)
The reason why binomial coefficients appear again and again in probability theory is the following theorem:

The number of ways of choosing k elements from a set of n elements is $\binom{n}{k}$.

Download free ebooks at bookboon.com

For example, the number of subsets with 5 elements (poker hands) of a set with 52 elements (a pack of cards) is equal to

$$
\binom{52}{5}=2598960
$$

An easy way of remembering the binomial coefficients is by arranging them in Pascal's triangle where each number is equal to the sum of the numbers immediately above:

$$
\begin{aligned}
& \binom{0}{0} \quad 1 \\
& \binom{1}{0}\binom{1}{1} \\
& 11 \\
& 121 \\
& 1331 \\
& \left(\begin{array}{l}
\left.\left.\begin{array}{l}
4 \\
0 \\
0
\end{array}\right)\left(\begin{array}{l}
4 \\
5 \\
1 \\
1
\end{array}\right)\left(\begin{array}{l}
3 \\
1 \\
5 \\
2
\end{array}\right)\binom{4}{2}\left(\begin{array}{l}
3 \\
5 \\
3 \\
3
\end{array}\right)\binom{4}{3}\left(\begin{array}{l}
4 \\
5 \\
4 \\
4
\end{array}\right) \quad \begin{array}{c}
14641 \\
5 \\
5 \\
5
\end{array}\right) \quad 15101051
\end{array}\right. \\
& \binom{6}{0}\binom{6}{1}\binom{6}{2}\binom{6}{3}\binom{6}{4}\binom{6}{5}\binom{6}{6} 1615201561
\end{aligned}
$$

One notices the rule

$$
\binom{n}{n-k}=\binom{n}{k}, \text { e.g. }\binom{10}{7}=\binom{10}{3}
$$

2.6 Multinomial coefficients

The multinomial coefficients are defined as

$$
\binom{n}{k_{1} \cdots k_{r}}=\frac{n!}{k_{1}!\cdots k_{r}!}
$$

for integers n and k_{1}, \ldots, k_{r} with $n=k_{1}+\cdots+k_{r}$. The multinomial coefficients are also called generalized binomial coefficients since the binomial coefficient

$$
\binom{n}{k}
$$

is equal to the multinomial coefficient

$$
\left(\begin{array}{cc}
n \\
k & l
\end{array}\right)
$$

with $l=n-k$.

3 Random variables

3.1 Random variables, definition

Consider a probability space (Ω, P). A random variable is a map X from Ω into the set of real numbers \mathbb{R}.

Normally, one can forget about the probability space and simply think of the following rule of thumb:

Remember: A random variable is a function taking different values with different probabilities.

The probability that the random variable X takes certain values is written in the following way:
$P(X=x)$: the probability that X takes the value $x \in \mathbb{R}$,
$P(X<x)$: the probability that X takes a value smaller than x, $P(X>x)$: the probability that X takes a value greater than x, etc.

One has the following rules:

$$
\begin{aligned}
P(X \leq x) & =P(X<x)+P(X=x) \\
P(X \geq x) & =P(X>x)+P(X=x) \\
1 & =P(X<x)+P(X=x)+P(X>x)
\end{aligned}
$$

3.2 The distribution function

The distribution function of a random variable X is the function $F: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
F(x)=P(X \leq x) .
$$

$F(x)$ is an increasing function with values in the interval $[0,1]$ and moreover satisfies $F(x) \rightarrow 1$ for $x \rightarrow \infty$, and $F(x) \rightarrow 0$ for $x \rightarrow-\infty$.

By means of $F(x)$, all probabilities of X can be computed:

$$
\begin{aligned}
& P(X<x)=\lim _{\varepsilon \rightarrow 0} F(x-\varepsilon) \\
& P(X=x)=F(x)-\lim _{\varepsilon \rightarrow 0} F(x-\varepsilon) \\
& P(X \geq x)=1-\lim _{\varepsilon \rightarrow 0} F(x-\varepsilon) \\
& P(X>x)=1-F(x)
\end{aligned}
$$

3.3 Discrete random variables, point probabilities

A random variable X is called discrete if it takes only finitely many or countably many values. For all practical purposes, we may define a discrete random variable as a random variable taking only values in the set $\{0,1,2, \ldots\}$. The point probabilities

$$
P(X=k)
$$

determine the distribution of X. Indeed,

$$
P(X \in A)=\sum_{k \in A} P(X=k)
$$

for any $A \subseteq\{0,1,2, \ldots\}$. In particular we have the rules

$$
\begin{aligned}
& P(X \leq k)=\sum_{i=0}^{k} P(X=i) \\
& P(X \geq k)=\sum_{i=k}^{\infty} P(X=i)
\end{aligned}
$$

The point probabilities can be graphically illustrated by means of a pin diagram:

Download free ebooks at bookboon.com

3.4 Continuous random variables, density function

A random variable X is called continuous if it has a density function $f(x)$. The density function, usually referred to simply as the density, satisfies

$$
P(X \in A)=\int_{t \in A} f(t) d t
$$

for all $A \subseteq \mathbb{R}$. If A is an interval $[a, b]$ we thus have

$$
P(a \leq X \leq b)=\int_{a}^{b} f(t) d t
$$

One should think of the density as the continuous analogue of the point probability function in the discrete case.

3.5 Continuous random variables, distribution function

For a continuous random variable X with density $f(x)$ the distribution function $F(x)$ is given by

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

The distribution function satisfies the following rules:

$$
\begin{aligned}
& P(X \leq x)=F(x) \\
& P(X \geq x)=1-F(x) \\
& P(|X| \leq x)=F(x)-F(-x) \\
& P(|X| \geq x)=F(-x)+1-F(x)
\end{aligned}
$$

3.6 Independent random variables

Two random variables X and Y are called independent if the events $X \in A$ and $Y \in B$ are independent for any subsets $A, B \subseteq \mathbb{R}$. Independence of three or more random variables is defined similarly.

Remember: X and Y are independent if nothing can be deduced about the value of Y from knowing the value of X.

EXAMPLE. Throw a red dice and a black dice and consider the random variables
X : number of pips of red dice,
Y : number of pips of black dice,
Z : number of pips of red and black dice in total.
X and Y are independent since we can deduce nothing about X by knowing Y. In contrast, X and Z are not independent since information about Z yields information about X (if, for example, Z has the value 10 , then X necessarily has one of the values 4,5 and 6).

3.7 Random vector, simultaneous density, and distribution function

If X_{1}, \ldots, X_{n} are random variables defined on the same probability space (Ω, P) we call $\mathbf{X}=$ $\left(X_{1}, \ldots, X_{n}\right)$ an (n-dimensional) random vector. It is a map

$$
\mathbf{X}: \Omega \rightarrow \mathbb{R}^{n}
$$

The simultaneous (n-dimensional) distribution function is the function $\mathbf{F}: \mathbb{R}^{n} \rightarrow[0,1]$ given by

$$
\mathbf{F}\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{1} \leq x_{1} \wedge \cdots \wedge X_{n} \leq x_{n}\right)
$$

Suppose now that the X_{i} are continuous. Then \mathbf{X} has a simultaneous (n-dimensional) density $\mathbf{f}: \mathbb{R}^{n} \rightarrow[0, \infty[$ satisfying

$$
P(\mathbf{X} \in A)=\int_{\mathbf{x} \in A} \mathbf{f}(\mathbf{x}) d \mathbf{x}
$$

for all $A \subseteq \mathbb{R}^{n}$. The individual densities f_{i} of the X_{i} are called marginal densities, and we obtain them from the simultaneous density by the formula

$$
f_{1}\left(x_{1}\right)=\int_{\mathbb{R}^{n-1}} \mathbf{f}\left(x_{1}, \ldots, x_{n}\right) d x_{2} \ldots d x_{n}
$$

stated here for the case $f_{1}\left(x_{1}\right)$.

Remember: The marginal densities are obtained from the simultaneous density by "integrating away the superfluous variables".

4 Expected value and variance

4.1 Expected value of random variables

The expected value of a discrete random variable X is defined as

$$
E(X)=\sum_{k=1}^{\infty} P(X=k) \cdot k
$$

The expected value of a continuous random variable X with density $f(x)$ is defined as

$$
E(X)=\int_{-\infty}^{\infty} f(x) \cdot x d x
$$

Often, one uses the Greek letter μ ("mu") to denote the expected value.

4.2 Variance and standard deviation of random variables

The variance of a random variable X with expected value $E(X)=\mu$ is defined as

$$
\operatorname{var}(X)=E\left((X-\mu)^{2}\right)
$$

If X is discrete, the variance can be computed thus:

$$
\operatorname{var}(X)=\sum_{k=0}^{\infty} P(X=k) \cdot(k-\mu)^{2}
$$

If X is continuous with density $f(x)$, the variance can be computed thus:

$$
\operatorname{var}(X)=\int_{-\infty}^{\infty} f(x)(x-\mu)^{2} d x
$$

The standard deviation σ ("sigma") of a random variable X is the square root of the variance:

$$
\sigma(X)=\sqrt{\operatorname{var}(X)}
$$

4.3 Example (computation of expected value, variance, and standard deviation)

Example 1. Define the discrete random variable X as the number of pips shown by a certain dice. The point probabilities are $P(X=k)=1 / 6$ for $k=1,2,3,4,5,6$. Therefore, the expected value is

$$
E(X)=\sum_{k=1}^{6} \frac{1}{6} \cdot k=\frac{1+2+3+4+5+6}{6}=3.5 .
$$

The variance is

$$
\operatorname{var}(X)=\sum_{k=1}^{6} \frac{1}{6} \cdot(k-3.5)^{2}=\frac{(1-3.5)^{2}+(2-3.5)^{2}+\cdots+(6-3.5)^{2}}{6}=2.917 .
$$

The standard deviation thus becomes

$$
\sigma(X)=\sqrt{2.917}=1.708
$$

EXAMPLE 2. Define the continuous random variable X as a random real number in the interval $[0,1]$. X then has the density $f(x)=1$ on $[0,1]$. The expected value is

$$
E(X)=\int_{0}^{1} x d x=0.5
$$

The variance is

$$
\operatorname{var}(X)=\int_{0}^{1}(x-0.5)^{2} d x=0.083 .
$$

The standard deviation is

$$
\sigma=\sqrt{0.083}=0.289
$$

4.4 Estimation of expected value μ and standard deviation σ by eye

If the density function (or a pin diagram showing the point probabilities) of a random variable is given, one can estimate μ and σ by eye. The expected value μ is approximately the "centre of mass" of the distribution, and the standard deviation σ has a size such that more or less two thirds of the "probability mass" lie in the interval $\mu \pm \sigma$.

4.5 Addition and multiplication formulae for expected value and variance

Let X and Y be random variables. Then one has the formulae

$$
\begin{array}{ll}
E(X+Y) & =E(X)+E(Y) \\
E(a X) & =a \cdot E(X) \\
\operatorname{var}(X) & =E\left(X^{2}\right)-E(X)^{2} \\
\operatorname{var}(a X) & =a^{2} \cdot \operatorname{var}(X) \\
\operatorname{var}(X+a) & =\operatorname{var}(X)
\end{array}
$$

for every $a \in \mathbb{R}$. If X and Y are independent, one has moreover

$$
\begin{aligned}
E(X \cdot Y) & =E(X) \cdot E(Y) \\
\operatorname{var}(X+Y) & =\operatorname{var}(X)+\operatorname{var}(Y)
\end{aligned}
$$

Remember: The expected value is additive. For independent random variables, the expected value is multiplicative and the variance is additive.

4.6 Covariance and correlation coefficient

The covariance of two random variables X and Y is the number

$$
\operatorname{Cov}(X, Y)=E((X-E X)(Y-E Y))
$$

One has

$$
\begin{aligned}
\operatorname{Cov}(X, X) & =\operatorname{var}(X) \\
\operatorname{Cov}(X, Y) & =E(X \cdot Y)-E X \cdot E Y \\
\operatorname{var}(X+Y) & =\operatorname{var}(X)+\operatorname{var}(Y)+2 \cdot \operatorname{Cov}(X, Y)
\end{aligned}
$$

The correlation coefficient ρ ("rho") of X and Y is the number

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma(X) \cdot \sigma(Y)},
$$

where $\sigma(X)=\sqrt{\operatorname{var}(X)}$ and $\sigma(Y)=\sqrt{\operatorname{var}(Y)}$ are the standard deviations of X and Y. It is here assumed that neither standard deviation is zero. The correlation coefficient is a number in the interval $[-1,1]$. If X and Y are independent, both the covariance and ρ equal zero.

Remember: A positive correlation coefficient implies that normally X is large when Y large, and vice versa. A negative correlation coefficient implies that normally X is small when Y is large, and vice versa.

EXAMPLE. A red and a black dice are thrown. Consider the random variables
X : number of pips of red dice,
Y : number of pips of red and black dice in total.

If X is large, Y will normally be large too, and vice versa. We therefore expect a positive correlation coefficient. More precisely, we compute

$$
\begin{aligned}
E(X) & =3.5 \\
E(Y) & =7 \\
E(X \cdot Y) & =27.42 \\
\sigma(X) & =1.71 \\
\sigma(Y) & =2.42
\end{aligned}
$$

The covariance thus becomes

$$
\operatorname{Cov}(X, Y)=E(X \cdot Y)-E(X) \cdot E(Y)=27.42-3.5 \cdot 7=2.92
$$

As expected, the correlation coefficient is a positive number:

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma(X) \cdot \sigma(Y)}=\frac{2.92}{1.71 \cdot 2.42}=0.71
$$

Download free ebooks at bookboon.com

5 The Law of Large Numbers

5.1 Chebyshev's Inequality

For a random variable X with expected value μ and variance σ^{2}, we have Chebyshev's Inequality:

$$
P(|X-\mu| \geq a) \leq \frac{\sigma^{2}}{a^{2}}
$$

for every $a>0$.

5.2 The Law of Large Numbers

Consider a sequence $X_{1}, X_{2}, X_{3}, \ldots$ of independent random variables with the same distribution and let μ be the common expected value. Denote by S_{n} the sums

$$
S_{n}=X_{1}+\cdots+X_{n}
$$

The Law of Large Numbers then states that

$$
P\left(\left|\frac{S_{n}}{n}-\mu\right|>\varepsilon\right) \rightarrow 0 \text { for } n \rightarrow \infty
$$

for every $\varepsilon>0$. Expressed in words:

The mean value of a sample from any given distribution converges to the expected value of that distribution when the size n of the sample approaches ∞.

5.3 The Central Limit Theorem

Consider a sequence $X_{1}, X_{2}, X_{3}, \ldots$ of independent random variables with the same distribution. Let μ be the common expected value and σ^{2} the common variance. It is assumed that σ^{2} is positive. Denote by S_{n}^{\prime} the normed sums

$$
S_{n}^{\prime}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}}
$$

By "normed" we understand that the S_{n}^{\prime} have expected value 0 and variance 1. The Central Limit Theorem now states that

$$
P\left(S_{n}^{\prime} \leq x\right) \rightarrow \Phi(x) \text { for } n \rightarrow \infty
$$

for all $x \in \mathbb{R}$, where Φ is the distribution function of the standard normal distribution (see section 15.4):

$$
\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} t^{2}} d t
$$

The distribution function of the normed sums S_{n}^{\prime} thus converges to Φ when n converges to ∞.
This is a quite amazing result and the absolute climax of probability theory! The surprising thing is that the limit distribution of the normed sums is independent of the distribution of the X_{i}.

5.4 Example (distribution functions converge to Φ)

Consider a sequence of independent random variables X_{1}, X_{2}, \ldots all having the same point probabilities

$$
P\left(X_{i}=0\right)=P\left(X_{i}=1\right)=\frac{1}{2}
$$

The sums $S_{n}=X_{1}+\cdots+X_{n}$ are binomially distributed with expected value $\mu=n / 2$ and variance $\sigma^{2}=n / 4$. The normed sums thus become

$$
S_{n}^{\prime}=\frac{X_{1}+\cdots+X_{n}-\mu / 2}{\sqrt{n} / 2}
$$

The distribution of the S_{n}^{\prime} is given by the distribution function F_{n}. The Central Limit Theorem states that F_{n} converges to Φ for $n \rightarrow \infty$. The figure below shows F_{n} together with Φ for $n=$ $1,2,10,100$. It is a moment of extraordinary beauty when one watches the F_{n} slowly approaching Φ :

6 Descriptive statistics

6.1 Median and quartiles

Suppose we have n observations x_{1}, \ldots, x_{n}. We then define the median $x(0.5)$ of the observations as the "middle observation". More precisely,

$$
x(0.5)= \begin{cases}x_{(n+1) / 2} & \text { if } n \text { is odd } \\ \left(x_{n / 2}+x_{n / 2+1}\right) / 2 & \text { if } n \text { is even }\end{cases}
$$

where the observations have been sorted according to size as

$$
x_{1} \leq x_{2} \leq \cdots \leq x_{n}
$$

Similarly, the lower quartile $x(0.25)$ is defined such that 25% of the observations lie below $x(0.25)$, and the upper quartile $x(0.75)$ is defined such that 75% of the observations lie below $x(0.75)$.

The interquartile range is the distance between $x(0.25)$ and $x(0.75)$, i.e. $x(0.75)-x(0.25)$.

6.2 Mean value

Suppose we have n observations x_{1}, \ldots, x_{n}. We define the mean or mean value of the observations as

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

6.3 Empirical variance and empirical standard deviation

Suppose we have n observations x_{1}, \ldots, x_{n}. We define the empirical variance of the observations as

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

Download free ebooks at bookboon.com

The empirical standard deviation is the square root of the empirical variance:

$$
s=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}} .
$$

The greater the empirical standard deviation s is, the more "dispersed" the observations are around the mean value \bar{x}.

6.4 Empirical covariance and empirical correlation coefficient

Suppose we have n pairs of observations $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$. We define the empirical covariance of these pairs as

$$
\operatorname{Cov}_{\mathrm{emp}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}
$$

Alternatively, $\mathrm{Cov}_{\mathrm{emp}}$ can be computed as

$$
\operatorname{Cov}_{\mathrm{emp}}=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y}}{n-1}
$$

The empirical correlation coefficient is

$$
r=\frac{\text { empirical covariance }}{(\text { empirical standard deviation of the } x)(\text { empirical standard deviation of the } y)}=\frac{\operatorname{Cov}_{\mathrm{emp}}}{s_{x} s_{y}} .
$$

The empirical correlation coefficient r always lies in the interval $[-1,1]$.

Understanding of the empirical correlation coefficient. If the x-observations are independent of the y-observations, then r will be equal or close to 0 . If the x-observations and the y-observations are dependent in such a way that large x-values usually correspond to large y-values, and vice versa, then r will be equal or close to 1 . If the x-observations and the y-observations are dependent in such a way that large x-values usually correspond to small y-values, and vice versa, then r will be equal or close to -1 .

7 Statistical hypothesis testing

7.1 Null hypothesis and alternative hypothesis

A statistical test is a procedure that leads to either acceptance or rejection of a null hypothesis \mathbf{H}_{0} given in advance. Sometimes \mathbf{H}_{0} is tested against an explicit alternative hypothesis \mathbf{H}_{1}.

At the base of the test lie one or more observations. The null hypothesis (and the alternative hypothesis, if any) concern the question which distribution these observations were taken from.

7.2 Significance probability and significance level

One computes the significance probability P, that is the probability - if \mathbf{H}_{0} is true - of obtaining an observation which is as extreme, or more extreme, than the one given. The smaller P is, the less plausible \mathbf{H}_{0} is.

Often, one chooses a significance level α in advance, typically $\alpha=5 \%$. One then rejects \mathbf{H}_{0} if P is smaller than α (and one says, " \mathbf{H}_{0} is rejected at significance level α "). If P is greater than α, then \mathbf{H}_{0} is accepted (and one says, " \mathbf{H}_{0} is accepted at significance level α " or " \mathbf{H}_{0} cannot be rejected at significance level α ").

7.3 Errors of type I and II

We speak about a type I error if we reject a true null hypothesis. If the significance level is α, then the risk of a type I error is at most α.

We speak about a type II error if we accept a false null hypothesis.
The strength of a test is the probability of rejecting a false \mathbf{H}_{0}. The greater the strength, the smaller the risk of a type II error. Thus, the strength should be as great as possible.

7.4 Example

Suppose we wish to investigate whether a certain dice is fair. By "fair" we here only understand that the probability p of a six is $1 / 6$. We test the null hypothesis

$$
\mathbf{H}_{0}: p=\frac{1}{6} \text { (the dice is fair) }
$$

against the alternative hypothesis

$$
\mathbf{H}_{1}: p>\frac{1}{6} \text { (the dice is biased) }
$$

The observations on which the test is carried out are the following ten throws of the dice:

$$
2,6,3,6,5,2,6,6,4,6 .
$$

Let us in advance agree upon a significance level $\alpha=5 \%$. Now the significance probability P can be computed. By "extreme observations" is understood that there are many sixes. Thus, P is the probability of having at least five sixes in 10 throws with a fair dice. We compute

$$
P=\sum_{k=5}^{10}\binom{10}{k}(1 / 6)^{k}(5 / 6)^{10-k}=0.015
$$

(see section 8 on the binomial distribution). Since $P=1.5 \%$ is smaller than $\alpha=5 \%$, we reject \mathbf{H}_{0}. If the same test was performed with a fair dice, the probability of committing a type I error would be 1.5%.

8 The binomial distribution $\operatorname{Bin}(n, p)$

8.1 Parameters

n : number of tries
p : probability of success
In the formulae we also use the "probability of failure" $q=1-p$.

8.2 Description

We carry out n independent tries that each result in either success or failure. In each try the probability of success is the same, p. Consequently, the total number of successes X is binomially distributed, and we write $X \sim \operatorname{Bin}(n, p)$. X is a discrete random variable and takes values in the set $\{0,1, \ldots, n\}$.

8.3 Point probabilities

For $k \in\{0,1, \ldots, n\}$, the point probabilities in a $\operatorname{Bin}(n, p)$ distribution are

$$
P(X=k)=\binom{n}{k} \cdot p^{k} \cdot q^{n-k}
$$

See section 2.5 regarding the binomial coefficients $\binom{n}{k}$.
EXAMPLE. If a dice is thrown twenty times, the total number of sixes, X, will be binomially distributed with parameters $n=20$ and $p=1 / 6$. We can list the point probabilities $P(X=k)$

Download free ebooks at bookboon.com
and the cumulative probabilities $P(X \geq k)$ in a table (expressed as percentages):

k	0	1	2	3	4	5	6	7	8	9
$P(X=k)$	2.6	10.4	19.8	23.8	20.2	12.9	6.5	2.6	0.8	0.2
$P(X \geq k)$	100	97.4	87.0	67.1	43.3	23.1	10.2	3.7	1.1	0.3

8.4 Expected value and variance

Expected value: $\quad E(X)=n p$.
Variance: $\quad \operatorname{var}(X)=n p q$.

8.5 Significance probabilities for tests in the binomial distribution

We perform n independent experiments with the same probability of success p and count the number k of successes. We wish to test the null hypothesis $\mathbf{H}_{0}: p=p_{0}$ against an alternative hypothesis \mathbf{H}_{1}.

\mathbf{H}_{0}	\mathbf{H}_{1}	Significance probability
$p=p_{0}$	$p>p_{0}$	$P(X \geq k)$
$p=p_{0}$	$p<p_{0}$	$P(X \leq k)$
$p=p_{0}$	$p \neq p_{0}$	$\sum_{l} P(X=l)$

where in the last line we sum over all l for which $P(X=l) \leq P(X=k)$.

EXAMPLE. A company buys a machine that produces microchips. The manufacturer of the machine claims that at most one sixth of the produced chips will be defective. The first day the machine produces 20 chips of which 6 are defective. Can the company reject the manufacturer's claim on this background?

Solution. We test the null hypothesis $\mathbf{H}_{0}: p=1 / 6$ against the alternative hypothesis \mathbf{H}_{1} : $p>1 / 6$. The significance probability can be computed as $P(X \geq 6)=10.2 \%$ (see e.g. the table in section 8.3). We conclude that the company cannot reject the manufacturer's claim at the 5% level.

8.6 The normal approximation to the binomial distribution

If the parameter n (the number of tries) is large, a binomially distributed random variable X will be approximately normally distributed with expected value $\mu=n p$ and standard deviation $\sigma=\sqrt{n p q}$. Therefore, the point probabilities are approximately

$$
P(X=k) \approx \varphi\left(\frac{k-n p}{\sqrt{n p q}}\right) \cdot \frac{1}{\sqrt{n p q}}
$$

where φ is the density of the standard normal distribution, and the tail probabilities are approximately

$$
P(X \leq k) \approx \Phi\left(\frac{k+\frac{1}{2}-n p}{\sqrt{n p q}}\right)
$$

$$
P(X \geq k) \approx 1-\Phi\left(\frac{k-\frac{1}{2}-n p}{\sqrt{n p q}}\right)
$$

where Φ is the distribution function of the standard normal distribution (Table B.2).

Rule of thumb. One may use the normal approximation if $n p$ and $n q$ are both greater than 5 .

EXAMPLE (continuation of the example in section 8.5). After 2 weeks the machine has produced 200 chips of which 46 are defective. Can the company now reject the manufacturer's claim that the probability of defects is at most one sixth?

Solution. Again we test the null hypothesis $H_{0}: p=1 / 6$ against the alternative hypothesis $H_{1}: p>1 / 6$. Since now $n p \approx 33$ and $n q \approx 167$ are both greater than 5 , we may use the normal approximation in order to compute the significance probability:

$$
P(X \geq 46) \approx 1-\Phi\left(\frac{46-\frac{1}{2}-33.3}{\sqrt{27.8}}\right) \approx 1-\Phi(2.3) \approx 1.1 \%
$$

Therefore, the company may now reject the manufacturer's claim at the 5% level.

8.7 Estimators

Suppose k is an observation from a random variable $X \sim \operatorname{Bin}(n, p)$ with known n and unknown p. The maximum likelihood estimate (ML estimate) of p is

$$
\hat{p}=\frac{k}{n}
$$

This estimator is unbiased (i.e. the expected value of the estimator is p) and has variance

$$
\operatorname{var}(\hat{p})=\frac{p q}{n}
$$

The expression for the variance is of no great practical value since it depends on the true (unknown) probability parameter p. If, however, one plugs in the estimated value \hat{p} in place of p, one gets the estimated variance

$$
\frac{\hat{p}(1-\hat{p})}{n} .
$$

EXAMPLE. We consider again the example with the machine that has produced twenty microchips of which the six are defective. What is the maximum likelihood estimate of the probability parameter? What is the estimated variance?

Solution. The maximum likelihood estimate is

$$
\hat{p}=\frac{6}{20}=30 \%
$$

and the variance of \hat{p} is estimated as

$$
\frac{0.3 \cdot(1-0.3)}{20}=0.0105
$$

The standard deviation is thus estimated to be $\sqrt{0.0105} \approx 0.10$. If we presume that \hat{p} lies within two standard deviations from p, we may conclude that p is between 10% and 50%.

8.8 Confidence intervals

Suppose k is an observation from a binomially distributed random variable $X \sim \operatorname{Bin}(n, p)$ with known n and unknown p. The confidence interval with confidence level $1-\alpha$ around the point estimate $\hat{p}=k / n$ is

$$
\left[\hat{p}-u_{1-\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+u_{1-\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right] .
$$

Loosely speaking, the true value p lies in the confidence interval with the probability $1-\alpha$.
The number $u_{1-\alpha / 2}$ is determined by $\Phi\left(u_{1-\alpha / 2}\right)=1-\alpha / 2$ where Φ is the distribution function of the standard normal distribution. It appears e.g. from Table B. 2 that with confidence level 95% one has

$$
u_{1-\alpha / 2}=u_{0.975}=1.96
$$

EXERCISE. In an opinion poll from the year 2015, 62 out of 100 persons answer that they intend to vote for the Green Party at the next election. Compute the confidence interval with confidence

You've applied to your University...

Nido has some great options left! Live in one of our twin studios in Nido King's Cross or two bedroom studios in Nido Spitalfields.

Nido is the newest way of living student life in central London. It's not just a residence, it's a way of living that we call 'Nidology'.
level 95% around the true percentage of Green Party voters.
Solution. The point estimate is $\hat{p}=62 / 100=0.62$. A confidence level of 95% yields $\alpha=$ 0.05. Looking up in the table (see above) gives $u_{0.975}=1.96$. We get

$$
1.96 \sqrt{\frac{0.62 \cdot 0.38}{100}}=0.10
$$

The confidence interval thus becomes

$$
[0.52,0.72] .
$$

So we can say with a certainty of 95% that between 52% and 72% of the electorate will vote for the Green Party at the next election.

9 The Poisson distribution Pois (λ)

9.1 Parameters

λ : Intensity

9.2 Description

Certain events are said to occur spontaneously, i.e. they occur at random times, independently of each other, but with a certain constant intensity λ. The intensity is the average number of spontaneous events per time interval. The number of spontaneous events X in any given concrete time interval is then Poisson distributed, and we write $X \sim \operatorname{Pois}(\lambda) . X$ is a discrete random variable and takes values in the set $\{0,1,2,3, \ldots\}$.

9.3 Point probabilities

For $k \in\{0,1,2,3 \ldots\}$ the point probabilities in a $\operatorname{Pois}(\lambda)$ distribution are

$$
P(X=k)=\frac{\lambda^{k}}{k!} \exp (-\lambda)
$$

Recall the convention $0!=1$.

EXAMPLE. In a certain shop an average of three customers per minute enter. The number of customers X entering during any particular minute is then Poisson distributed with intensity $\lambda=$ 3. The point probabilities (as percentages) can be listed in a table as follows:

$$
\begin{array}{c|ccccccccccc}
k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \geq 10 \\
\hline P(X=k) & 5.0 & 14.9 & 22.4 & 22.4 & 16.8 & 10.1 & 5.0 & 2.2 & 0.8 & 0.3 & 0.1
\end{array}
$$

9.4 Expected value and variance

Expected value: $\quad E(X)=\lambda$.
Variance: $\quad \operatorname{var}(X)=\lambda$.

9.5 Addition formula

Suppose that X_{1}, \ldots, X_{n} are independent Poisson distributed random variables. Let λ_{i} be the intensity of X_{i}, i.e. $X_{i} \sim \operatorname{Pois}\left(\lambda_{i}\right)$. Then the sum

$$
X=X_{1}+\cdots+X_{n}
$$

will be Poisson distributed with intensity

$$
\lambda=\lambda_{1}+\cdots+\lambda_{n}
$$

i.e. $X \sim \operatorname{Pois}(\lambda)$.

9.6 Significance probabilities for tests in the Poisson distribution

Suppose that k is an observation from a $\operatorname{Pois}(\lambda)$ distribution with unknown intensity λ. We wish to test the null hypothesis $\mathbf{H}_{0}: \lambda=\lambda_{0}$ against an alternative hypothesis \mathbf{H}_{1}.

$$
\begin{array}{ccl}
\mathbf{H}_{0} & \mathbf{H}_{1} & \text { Significance probability } \\
\hline \lambda=\lambda_{0} & \lambda>\lambda_{0} & P(X \geq k) \\
\lambda=\lambda_{0} & \lambda<\lambda_{0} & P(X \leq k) \\
\lambda=\lambda_{0} & \lambda \neq \lambda_{0} & \sum_{l} P(X=l)
\end{array}
$$

where the summation in the last line is over all l for which $P(X=l) \leq P(X=k)$.
If n independent observations k_{1}, \ldots, k_{n} from a $\operatorname{Pois}(\lambda)$ distribution are given, we can treat the sum $k=k_{1}+\cdots+k_{n}$ as an observation from a $\operatorname{Pois}(n \cdot \lambda)$ distribution.

9.7 Example (significant increase in sale of Skodas)

EXERCISE. A Skoda car salesman sells on average 3.5 cars per month. The month after a radio campaign for Skoda, seven cars are sold. Is this a significant increase?

Solution. The sale of cars in the given month may be assumed to be Poisson distributed with a certain intensity λ. We test the null hypothesis

$$
\mathbf{H}_{0}: \lambda=3.5
$$

against the alternative hypothesis

$$
\mathbf{H}_{1}: \lambda>3.5
$$

The significance probability, i.e. the probability of selling at least seven cars given that \mathbf{H}_{0} is true, is

$$
P=\sum_{k=7}^{\infty} \frac{(3.5)^{k}}{k!} \exp (-3.5)=0.039+0.017+0.007+0.002+\cdots=0.065
$$

Since P is greater than 5%, we cannot reject \mathbf{H}_{0}. In other words, the increase is not significant.

9.8 The binomial approximation to the Poisson distribution

The Poisson distribution with intensity λ is the limit distribution of the binomial distribution with parameters n and $p=\lambda / n$ when n tends to ∞. In other words, the point probabilities satisfy

$$
P\left(X_{n}=k\right) \rightarrow P(X=k) \text { for } n \rightarrow \infty
$$

for $X \sim \operatorname{Pois}(\lambda)$ and $X_{n} \sim \operatorname{Bin}(n, \lambda / n)$. In real life, however, one almost always prefers to use the normal approximation instead (see the next section).

9.9 The normal approximation to the Poisson distribution

If the intensity λ is large, a Poisson distributed random variable X will to a good approximation be normally distributed with expected value $\mu=\lambda$ and standard deviation $\sigma=\sqrt{\lambda}$. The point probabilities therefore are

$$
P(X=k) \approx \varphi\left(\frac{k-\lambda}{\sqrt{\lambda}}\right) \cdot \frac{1}{\sqrt{\lambda}}
$$

where $\varphi(x)$ is the density of the standard normal distribution, and the tail probabilities are

$$
P(X \leq k) \approx \Phi\left(\frac{k+\frac{1}{2}-\lambda}{\sqrt{\lambda}}\right)
$$

$$
P(X \geq k) \approx 1-\Phi\left(\frac{k-\frac{1}{2}-\lambda}{\sqrt{\lambda}}\right)
$$

where Φ is the distribution function of the standard normal distribution (Table B.2).

Rule of thumb. The normal approximation to the Poisson distribution applies if λ is greater than nine.

9.10 Example (significant decrease in number of complaints)

Exercise. The ferry Deutschland between Rødby and Puttgarten receives an average of 180 complaints per week. In the week immediately after the ferry's cafeteria was closed, only 112 complaints are received. Is this a significant decrease?

Solution. The number of complaints within the given week may be assumed to be Poisson distributed with a certain intensity λ. We test the null hypothesis

$$
\mathbf{H}_{0}: \lambda=180
$$

against the alternative hypothesis

$$
\mathbf{H}_{1}: \lambda<180 .
$$

The significance probability, i.e. the probability of having at most 112 complaints given \mathbf{H}_{0}, can be approximated by the normal distribution:

$$
P=\Phi\left(\frac{112+\frac{1}{2}-180}{\sqrt{180}}\right)=\Phi(-5.03)<0.0001 .
$$

Since P is very small, we can clearly reject \mathbf{H}_{0}. The number of complaints has significantly decreased.

9.11 Estimators

Suppose $k_{1}, \ldots k_{n}$ are independent observations from a random variable $X \sim \operatorname{Pois}(\lambda)$ with unknown intensity λ. The maximum likelihood estimate (ML estimate) of λ is

$$
\hat{\lambda}=\left(k_{1}+\cdots+k_{n}\right) / n .
$$

This estimator is unbiased (i.e. the expected value of the estimator is λ) and has variance

$$
\operatorname{var}(\hat{\lambda})=\frac{\lambda}{n} .
$$

More precisely, we have

$$
n \hat{\lambda} \sim \operatorname{Pois}(n \lambda) .
$$

If we plug in the estimated value $\hat{\lambda}$ in λ 's place, we get the estimated variance

$$
\widehat{\operatorname{var}}(\hat{\lambda})=\frac{\hat{\lambda}}{n} .
$$

9.12 Confidence intervals

Suppose k_{1}, \ldots, k_{n} are independent observations from a Poisson distributed random variable $X \sim$ $\operatorname{Pois}(\lambda)$ with unknown λ. The confidence interval with confidence level $1-\alpha$ around the point estimate $\hat{\lambda}=\left(k_{1}+\cdots+k_{n}\right) / n$ is

$$
\left[\hat{\lambda}-u_{1-\alpha / 2} \sqrt{\frac{\hat{\lambda}}{n}}, \hat{\lambda}+u_{1-\alpha / 2} \sqrt{\frac{\hat{\lambda}}{n}}\right] .
$$

Loosely speaking, the true value λ lies in the confidence interval with probability $1-\alpha$.
The number $u_{1-\alpha / 2}$ is determined by $\Phi\left(u_{1-\alpha / 2}\right)=1-\alpha / 2$, where Φ is the distribution function of the standard normal distribution. It appears from, say, Table B. 2 that

$$
u_{1-\alpha / 2}=u_{0.975}=1.96
$$

for confidence level 95%.
EXAMPLE (continuation of the example in section 9.10). In the first week after the closure of the ferry's cafeteria, a total of 112 complaints were received. We consider $k=112$ as an observation from a $\operatorname{Pois}(\lambda)$ distribution and wish to find the confidence interval with confidence level 95% around the estimate

$$
\hat{\lambda}=112 .
$$

Looking up in the table gives $u_{0.975}=1.96$. The confidence interval thus becomes

$$
[112-1.96 \sqrt{112}, 112+1.96 \sqrt{112}] \approx[91,133]
$$

10 The geometrical distribution $\operatorname{Geo}(p)$

10.1 Parameters

p : probability of success
In the formulae we also use the "probability of failure" $q=1-p$.

10.2 Description

A series of experiments are carried out, each of which results in either success or failure. The probability of success p is the same in each experiment. The number W of failures before the first success is then geometrically distributed, and we write $W \sim \operatorname{Geo}(p)$. W is a discrete random variable and takes values in the set $\{0,1,2, \ldots\}$. The "wait until success" is $V=W+1$.

10.3 Point probabilities and tail probabilities

For $k \in\{0,1,2 \ldots\}$ the point probabilities in a $\operatorname{Geo}(p)$ distribution are

$$
P(X=k)=q^{k} p .
$$

In contrast to most other distributions, we can easily compute the tail probabilities in the geometrical distribution:

$$
P(X \geq k)=q^{k}
$$

Example. Pin diagram for the point probabilities in a geometrical distribution with probability of success $p=0.5$:

Download free ebooks at bookboon.com

10.4 Expected value and variance

Expected value: $\quad E(W)=q / p$.
Variance: $\quad \operatorname{var}(W)=q / p^{2}$.
Regarding the "wait until success" $V=W+1$, we have the following useful rule:

Rule. The expected wait until success is the reciprocal probability of success: $E(V)=1 / p$.
Example. A gambler plays lotto each week. The probability of winning in lotto, i.e. the probability of guessing correctly seven numbers picked randomly from a pool of 36 numbers, is

$$
p=\binom{36}{7}^{-1} \approx 0.0000001198 .
$$

The expected wait until success is thus

$$
E(V)=p^{-1}=\binom{36}{7} \text { weeks }=160532 \text { years } .
$$

11 The hypergeometrical distribution $\mathbf{H G}(n, r, N)$

11.1 Parameters

r : number of red balls
s : number of black balls
N : total number of balls ($N=r+s$)
n : number of balls picked out $(n \leq N)$

11.2 Description

In an urn we have r red balls and s black balls, in total $N=r+s$ balls. We now pick out n balls from the urn, randomly and without returning the chosen balls to the urn. Necessarily $n \leq N$. The number of red balls Y amongst the balls chosen is then hypergeometrically distributed and we write $Y \sim \operatorname{HG}(n, r, N) . Y$ is a discrete random variable with values in the set $\{0,1, \ldots, \min \{n, r\}\}$.

11.3 Point probabilities and tail probabilities

For $k \in\{0,1, \ldots, \min \{n, r\}\}$ the point probabilities of a $\mathrm{HG}(n, r, N)$ distribution are

$$
P(Y=k)=\frac{\binom{r}{k} \cdot\binom{s}{n-k}}{\binom{N}{n}}
$$

EXAMPLE. A city council has 25 members of which 13 are Conservatives. A cabinet is formed by picking five council members at random. What is the probability that the Conservatives will have absolute majority in the cabinet?

Solution. We have here a hypergeometrically distributed random variable $Y \sim \operatorname{HG}(5,13,25)$ and have to compute $P(Y \geq 3)$. Let us first compute all point probabilities (as percentages):

k	0	1	2	3	4	5
$P(Y=k)$	1.5	12.1	32.3	35.5	16.1	2.4

The sought-after probability thus becomes

$$
P(Y \geq 3)=35.5 \%+16.1 \%+2.4 \%=54.0 \%
$$

11.4 Expected value and variance

Expected value: $\quad E(Y)=n r / N$.
Variance: $\quad \operatorname{var}(Y)=\operatorname{nrs}(N-n) /\left(N^{2}(N-1)\right)$.

11.5 The binomial approximation to the hypergeometrical distribution

If the number of balls picked out, n, is small compared to both the number of red balls r and the number of black balls s, it becomes irrelevant whether the balls picked out are returned to the urn or not. We can thus approximate the hypergeometrical distribution by the binomial distribution:

$$
P(Y=k) \approx P(X=k)
$$

for $Y \sim \operatorname{HG}(n, r, N)$ and $X \sim \operatorname{Bin}(n, r / N)$. In practice, this approximation is of little value since it is as difficult to compute $P(X=k)$ as $P(Y=k)$.

11.6 The normal approximation to the hypergeometrical distribution

If n is small compared to both r and s, the hypergeometrical distribution can be approximated by the normal distribution with the same expected value and variance.

The point probabilities thus become

$$
P(Y=k) \approx \varphi\left(\frac{k-n r / N}{\sqrt{n r s(N-n) /\left(N^{2}(N-1)\right)}}\right) \cdot \frac{1}{\sqrt{n r s(N-n) /\left(N^{2}(N-1)\right)}}
$$

where φ is the density of the standard normal distribution. The tail probabilities become

$$
P(Y \leq k) \approx \Phi\left(\frac{k+\frac{1}{2}-n r / N}{\sqrt{n r s(N-n) /\left(N^{2}(N-1)\right)}}\right)
$$

$$
P(Y \geq k) \approx 1-\Phi\left(\frac{k-\frac{1}{2}-n r / N}{\sqrt{n r s(N-n) /\left(N^{2}(N-1)\right)}}\right)
$$

where Φ is the distribution function of the standard normal distribution (Table B.2).

12 The multinomial distribution $\operatorname{Mult}\left(n, p_{1}, \ldots, p_{r}\right)$

12.1 Parameters

n : number of tries
p_{1} : 1st probability parameter
\vdots
p_{r} : r th probability parameter
It is required that $p_{1}+\cdots+p_{r}=1$.

12.2 Description

We carry out n independent experiments each of which results in one out of r possible outcomes. The probability of obtaining an outcome of type i is the same in each experiment, namely p_{i}. Let

S_{i} denote the total number of outcomes of type i. The random vector $S=\left(S_{1}, \ldots, S_{r}\right)$ is then multinomially distributed and we write $S \sim \operatorname{Mult}\left(n, p_{1}, \ldots, p_{r}\right) . S$ is discrete and takes values in the set $\left\{\left(k_{1}, \ldots k_{r}\right) \in \mathbb{Z}^{r} \mid k_{i} \geq 0, k_{1}+\cdots+k_{r}=n\right\}$.

12.3 Point probabilities

For $k_{1}+\cdots+k_{r}=n$ the point probabilities of a $\operatorname{Mult}\left(n, p_{1}, \ldots, p_{r}\right)$ distribution are

$$
P\left(S=\left(k_{1}, \ldots, k_{r}\right)\right)=\binom{n}{k_{1} \cdots k_{r}} \cdot \prod_{i=1}^{r} p_{i}^{k_{i}}
$$

Example. Throw a dice six times and, for each i, let S_{i} be the total number of i s. Then $S=\left(S_{1}, \ldots, S_{6}\right)$ is a multinomially distributed random vector: $S \sim \operatorname{Mult}(6,1 / 6, \ldots, 1 / 6)$. The probability of obtaining, say, exactly one 1 , two 2 s , and three sixes is

$$
P(S=(1,2,0,0,0,3))=\binom{6}{120003} \cdot(1 / 6)^{1} \cdot(1 / 6)^{2} \cdot(1 / 6)^{3} \approx 0.13 \%
$$

Here, the multinomial coefficient (see also section 2.6) is computed as

$$
\binom{6}{120003}=\frac{6!}{1!2!0!0!0!3!}=\frac{720}{12}=60
$$

12.4 Estimators

Suppose k_{1}, \ldots, k_{r} is an observation from a random vector $S \sim \operatorname{Mult}\left(n, p_{1}, \ldots, p_{r}\right)$ with known n and unknown p_{i}. The maximum likelihood estimate of p_{i} is

$$
\hat{p}_{i}=\frac{k_{i}}{n} .
$$

This estimator is unbiased (i.e. the estimator's expected value is p_{i}) and has variance

$$
\operatorname{var}\left(\hat{p}_{i}\right)=\frac{p_{i}\left(1-p_{i}\right)}{n}
$$

13 The negative binomial distribution $\mathbf{N B}(n, p)$

13.1 Parameters

n : number of tries
p : probability of success
In the formulae we also use the letter $q=1-p$.

13.2 Description

A series of independent experiments are carried out each of which results in either success or failure. The probability of success p is the same in each experiment. The total number X of failures before the n 'th success is then negatively binomially distributed and we write $X \sim \mathrm{NB}(n, p)$. The random variable X is discrete and takes values in the set $\{0,1,2, \ldots\}$.

The geometrical distribution is the special case $n=1$ of the negative binomial distribution.

13.3 Point probabilities

For $k \in\{0,1,2 \ldots\}$ the point probabilities of a $\mathrm{NB}(k, p)$ distribution are

$$
P(X=k)=\binom{n+k-1}{n-1} \cdot p^{n} \cdot q^{k}
$$

13.4 Expected value and variance

Expected value: $\quad E(X)=n q / p$.
Variance: $\quad \operatorname{var}(X)=n q / p^{2}$.

13.5 Estimators

The negative binomial distribution is sometimes used as an alternative to the Poisson distribution in situations where one wishes to describe a random variable taking values in the set $\{0,1,2, \ldots\}$.

Suppose k_{1}, \ldots, k_{m} are independent observations from a $\mathrm{NB}(n, p)$ distribution with unknown parameters n and p. We then have the following estimators:

$$
\hat{n}=\frac{\bar{k}^{2}}{s^{2}-\bar{k}} \quad, \quad \hat{p}=\frac{\bar{k}}{s^{2}}
$$

where \bar{k} and s^{2} are the mean value and empirical variance of the observations.

14 The exponential distribution $\operatorname{Exp}(\lambda)$

14.1 Parameters

λ : Intensity

14.2 Description

In a situation where events occur spontaneously with the intensity λ (and where the number of spontaneous events in any given time interval thus is $\operatorname{Pois}(\lambda)$ distributed), the wait T between two spontaneous events is exponentially distributed and we write $T \sim \operatorname{Exp}(\lambda)$. T is a continuous random variable taking values in the interval $[0, \infty[$.

14.3 Density and distribution function

The density of the exponential distribution is

$$
f(x)=\lambda \cdot \exp (-\lambda x) .
$$

The distribution function is

$$
F(x)=1-\exp (-\lambda x) .
$$

14.4 Expected value and variance

Expected value: $\quad E(T)=1 / \lambda$.
Variance: $\quad \operatorname{var}(T)=1 / \lambda^{2}$.

15 The normal distribution

15.1 Parameters

μ : expected value
σ^{2} : variance
Remember that the standard deviation σ is the square root of the variance.

Download free ebooks at bookboon.com

15.2 Description

The normal distribution is a continuous distribution. If a random variable X is normally distributed, then X can take any values in \mathbb{R} and we write $X \sim N\left(\mu, \sigma^{2}\right)$.

The normal distribution is the most important distribution in all of statistics. Countless naturally occurring phenomena can be described (or approximated) by means of a normal distribution.

15.3 Density and distribution function

The density of the normal distribution is the function

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) .
$$

It is symmetric, i.e.

$$
f(-x)=f(x) .
$$

The distribution function of the normal distribution

$$
F(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(t-\mu)^{2}}{2 \sigma^{2}}\right) d t
$$

is difficult to compute. Instead, one uses the formula

$$
F(x)=\Phi\left(\frac{x-\mu}{\sigma}\right)
$$

where Φ is the distribution function of the standard normal distribution which can be looked up in Table B.2. From the table the following fact appears:

Fact: In a normal distribution, about 68% of the probability mass lies within one standard deviation from the expected value, and about 95% of the probability mass lies within two standard deviations from the expected value.

15.4 The standard normal distribution

A normal distribution with expected value $\mu=0$ and variance $\sigma^{2}=1$ is called a standard normal distribution. The standard deviation in a standard normal distribution equals 1 (obviously). The density $\varphi(t)$ of a standard normal distribution is

$$
\varphi(t)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} t^{2}\right)
$$

The distribution function Φ of a standard normal distribution is

$$
\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} t^{2}\right) d t .
$$

On can look up Φ in Table B.2.

15.5 Properties of Φ

The distribution function Φ of a standard normally distributed random variable $X \sim N(0,1)$ satisfies

$$
\begin{array}{ll}
P(X \leq x) & =\Phi(x) \\
P(X \geq x) & =\Phi(-x) \\
P(|X| \leq x) & =\Phi(x)-\Phi(-x) \\
P(|X| \geq x) & =2 \cdot \Phi(-x) \\
\Phi(-x) & =1-\Phi(x)
\end{array}
$$

15.6 Estimation of the expected value μ

Suppose $x_{1}, x_{2}, \ldots, x_{n}$ are independent observations of a random variable $X \sim N\left(\mu, \sigma^{2}\right)$. The maximum likelihood estimate (ML estimate) of μ is

$$
\hat{\mu}=\frac{x_{1}+\cdots+x_{n}}{n}
$$

This is simply the mean value and is written \bar{x}. The mean value is an unbiased estimator of μ (i.e. the estimator's expected value is μ). The variance of the mean value is

$$
\operatorname{var}^{2}(\bar{x})=\frac{\sigma^{2}}{n}
$$

More precisely, \bar{x} is itself normally distributed:

$$
\bar{x} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) .
$$

15.7 Estimation of the variance σ^{2}

Suppose x_{1}, \ldots, x_{n} are independent observations of a random variable $X \sim N\left(\mu, \sigma^{2}\right)$. Normally, the variance σ^{2} is estimated by the empirical variance

$$
s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1} .
$$

The empirical variance s^{2} is an unbiased estimator of the true variance σ^{2}.

Warning: The empirical variance is not the maximum likelihood estimate of σ^{2}. The maximum likelihood estimate of σ^{2} is

$$
\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n}
$$

but this is seldom used since it is biased and usually gives estimates which are too small.

15.8 Confidence intervals for the expected value μ

Suppose x_{1}, \ldots, x_{n} are independent observations of a normally distributed random variable $X \sim$ $N\left(\mu, \sigma^{2}\right)$ and that we wish to estimate the expected value μ. If the variance σ^{2} is known, the confidence interval for μ with confidence level $1-\alpha$ is as follows:

$$
\left[\bar{x}-u_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}, \quad \bar{x}+u_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right]
$$

The number $u_{1-\alpha / 2}$ is determined by $\Phi\left(u_{1-\alpha / 2}\right)=1-\alpha / 2$ where Φ is the distribution function of the standard normal distribution. It appears from, say, Table B. 2 that

$$
u_{1-\alpha / 2}=u_{0.975}=1.96
$$

for confidence level 95%.
If the variance σ^{2} is unknown, the confidence interval for μ with confidence level $1-\alpha$ is

$$
\left[\bar{x}-t_{1-\alpha / 2}(n-1) \sqrt{\frac{s^{2}}{n}}, \bar{x}+t_{1-\alpha / 2}(n-1) \sqrt{\frac{s^{2}}{n}}\right]
$$

where s^{2} is the empirical variance (section 6.3). The number $t_{1-\alpha / 2}$ is determined by $F\left(u_{1-\alpha / 2}\right)=$ $1-\alpha / 2$, where F is the distribution function of Student's t distribution with $n-1$ degrees of

Download free ebooks at bookboon.com
freedom. It appears from, say, Table B. 4 that

$$
\begin{array}{c|ccccccccccc}
n & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline t_{1-\alpha / 2} & 12.7 & 4.30 & 3.18 & 2.78 & 2.57 & 2.45 & 2.36 & 2.31 & 2.26 & 2.23 & 2.20
\end{array}
$$

for confidence level 95\%.

15.9 Confidence intervals for the variance σ^{2} and the standard deviation σ

Suppose x_{1}, \ldots, x_{n} are independent observations of a normally distributed random variable $X \sim$ $N\left(\mu, \sigma^{2}\right)$. The confidence interval for the variance σ^{2} with confidence level $1-\alpha$ is:

$$
\left[\frac{(n-1) s^{2}}{\chi_{\alpha / 2}^{2}}, \frac{(n-1) s^{2}}{\chi_{1-\alpha / 2}^{2}}\right]
$$

where s^{2} is the empirical variance (section 6.3). The numbers $\chi_{\alpha / 2}^{2}$ and $\chi_{1-\alpha / 2}^{2}$ are determined by $F\left(\chi_{\alpha / 2}^{2}\right)=\alpha / 2$ and $F\left(\chi_{1-\alpha / 2}^{2}\right)=1-\alpha / 2$ where F is the distribution function of the χ^{2} distribution with $n-1$ degrees of freedom (Table B.3).

Confidence intervals for the standard deviation σ with confidence level $1-\alpha$ are computed simply by taking the square root of the limits of the confidence intervals for the variance:

$$
\left[\sqrt{\frac{(n-1) s^{2}}{\chi_{\alpha / 2}^{2}}}, \sqrt{\frac{(n-1) s^{2}}{\chi_{1-\alpha / 2}^{2}}}\right]
$$

15.10 Addition formula

A linear function of a normally distributed random variable is itself normally distributed. If, in other words, $X \sim N\left(\mu, \sigma^{2}\right)$ and $a, b \in \mathbb{R}(a \neq 0)$, then

$$
a X+b \sim N\left(a \mu+b, a^{2} \sigma^{2}\right)
$$

The sum of independent normally distributed random variables is itself normally distributed. If, in other words, X_{1}, \ldots, X_{n} are independent with $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$, then we have the addition formula

$$
X_{1}+\cdots+X_{n} \sim N\left(\mu_{1}+\cdots+\mu_{n}, \sigma_{1}^{2}+\cdots+\sigma_{n}^{2}\right) .
$$

16 Distributions connected with the normal distribution

16.1 The χ^{2} distribution

Let $X_{1}, \ldots, X_{n} \sim N(0,1)$ be independent standard normally distributed random variables. The distribution of the sum of squares

$$
Q=X_{1}^{2}+\cdots+X_{n}^{2}
$$

is called the χ^{2} distribution with n degrees of freedom. The number of degrees of freedom is commonly symbolized as $d f$.

A χ^{2} distributed random variable Q with $d f$ degrees of freedom has expected value

$$
E(Q)=d f
$$

and variance

$$
\operatorname{var}(Q)=2 \cdot d f
$$

The density of the χ^{2} distribution is

$$
f(x)=K \cdot x^{\frac{d f}{2}-1} \cdot e^{-\frac{x}{2}}
$$

where $d f$ is the number of degrees of freedom and K is a constant. In practice, one doesn't use the density, but rather looks up the distribution function in Table B.3. The graph below shows the density function with $d f=1,4,10,20$ degrees of freedom.

16.2 Student's t distribution

Let X be a normally distributed random variable with expected value μ and variance σ^{2}. Let the random variables \bar{X} and S^{2} be the mean value and empirical variance, respectively, of a sample consisting of n observations from X. The distribution of

$$
T=\frac{\bar{X}-\mu}{\sqrt{S^{2} / n}}
$$

is then independent of both μ and σ^{2} and is called Student's t distribution with $n-1$ degrees of freedom.

A t distributed random variable T with $d f$ degrees of freedom has expected value

$$
E(T)=0
$$

for $d f \geq 2$, and variance

$$
\operatorname{var}(T)=\frac{d f}{d f-2}
$$

for $d f \geq 3$.
The density of the t distribution is

$$
f(x)=K \cdot\left(1+\frac{x^{2}}{d f}\right)^{-(d f+1) / 2}
$$

where $d f$ is the number of degrees of freedom and K is a constant. In practice, one doesn't use the density, but rather looks up the distribution function in Table B.4. The graph below shows the density of the t distribution with $d f=1,2,3$ degrees of freedom and additionally the density $\varphi(x)$ of the standard normal distribution. As it appears, the t distribution approaches the standard normal distribution when $d f \rightarrow \infty$.

16.3 Fisher's F distribution

Let X_{1} and X_{2} be independent normally distributed random variables with the same variance. For $i=1,2$ let the random variable S_{i}^{2} be the empirical variance of a sample of size n_{i} from X_{i}. The

Download free ebooks at bookboon.com
distribution of the quotient

$$
V=\frac{S_{1}^{2}}{S_{2}^{2}}
$$

is called Fisher's F distribution with $n_{1}-1$ degrees of freedom in the numerator and $n_{2}-1$ degrees of freedom in the denominator.

The density of the F distribution is

$$
f(x)=K \cdot \frac{x^{d f_{1} / 2-1}}{\left(d f_{2}+d f_{1} x\right)^{d f / 2}}
$$

where K is a constant, $d f_{1}$ the number of degrees of freedom in the numerator, $d f_{2}$ the number of degrees of freedom in the denominator, and $d f=d f_{1}+d f_{2}$. In practice, one doesn't use the density, but rather looks up the distribution function in Table B.5.

17 Tests in the normal distribution

17.1 One sample, known variance, $\mathbf{H}_{0}: \mu=\mu_{0}$

Let there be given a sample x_{1}, \ldots, x_{n} of n independent observations from a normal distribution with unknown expected value μ and known variance σ^{2}. We wish to test the null hypothesis

$$
\mathbf{H}_{0}: \mu=\mu_{0}
$$

For this purpose, we compute the statistic

$$
u=\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{\sigma}=\frac{\sum_{i=1}^{n} x_{i}-n \mu_{0}}{\sqrt{n \sigma^{2}}} .
$$

The significance probability now appears from the following table, where Φ is the distribution function of the standard normal distribution (Table B.2).

Alternative hypothesis	Significance probability
$\mathbf{H}_{1}: \mu>\mu_{0}$	$\Phi(-u)$
$\mathbf{H}_{1}: \mu<\mu_{0}$	$\Phi(u)$
$\mathbf{H}_{1}: \mu \neq \mu_{0}$	$2 \cdot \Phi(-\|u\|)$

Normally, we reject \mathbf{H}_{0} if the significance probability is less than 5%.

17.2 One sample, unknown variance, $\mathbf{H}_{0}: \mu=\mu_{0}$ (Student's t test)

Let there be given a sample x_{1}, \ldots, x_{n} of n independent observations from a normal distribution with unknown expected value μ and unknown variance σ^{2}. We wish to test the null hypothesis

$$
\mathbf{H}_{0}: \mu=\mu_{0}
$$

For this purpose, we compute the statistic

$$
t=\frac{\sqrt{n}\left(\bar{x}-\mu_{0}\right)}{s}=\frac{\sum_{i=1}^{n} x_{i}-n \mu_{0}}{\sqrt{n \cdot s^{2}}}
$$

where s^{2} is the empirical variance (see section 6.3).
The significance probability now appears from the following table where $F_{\text {Student }}$ is the distribution function of Student's t distribution with $d f=n-1$ degrees of freedom (Table B.4).

Alternative hypothesis	Significance probability
$\mathbf{H}_{1}: \mu>\mu_{0}$	$1-F_{\text {Student }}(t)$
$\mathbf{H}_{1}: \mu<\mu_{0}$	$1-F_{\text {Student }}(-t)$
$\mathbf{H}_{1}: \mu \neq \mu_{0}$	$2 \cdot\left(1-F_{\text {Student }}(\|t\|)\right)$

Normally, we reject \mathbf{H}_{0} if the significance probability is less than 5%.

EXAMPLE. The headmaster of a school wishes to confirm statistically that his students have performed significantly miserably in the 2008 final exams. For this purpose, $n=10$ students are picked at random. Their final scores are

$$
\begin{array}{cccccccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} \\
\hline 7.6 & 7.7 & 7.5 & 5.8 & 5.7 & 7.9 & 5.4 & 6.7 & 7.9 & 9.4
\end{array}
$$

The national average for 2008 is 8.27 . It is reasonable to assume that the final scores are normally distributed. However, the variance is unknown. Therefore, we apply Student's t test to test the null hypothesis

$$
\mathbf{H}_{0}: \mu=8.27
$$

against the alternative hypothesis

$$
\mathbf{H}_{1}: \mu<8.27
$$

We compute the mean value of the observations as $\bar{x}=7.17$ and the empirical standard deviation as $s=1.26$. We obtain the statistic

$$
t=\frac{\sqrt{10}(7.17-8.27)}{1.26}=-2.76
$$

Looking up in Table B. 4 under $d f=n-1=9$ degrees of freedom gives a significance probability

$$
1-F_{\text {Student }}(-t)=1-F_{\text {Student }}(2.76)
$$

between 1% and 2.5%. We may therefore reject \mathbf{H}_{0} and confirm the headmaster's assumption that his students have performed significantly poorer than the rest of the country.

17.3 One sample, unknown expected value, $\mathbf{H}_{0}: \sigma^{2}=\sigma_{0}^{2}$

THEOREM. Let there be given n independent observations x_{1}, \ldots, x_{n} from a normal distribution with variance σ^{2}. The statistic

$$
q=\frac{(n-1) s^{2}}{\sigma^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{\sigma^{2}}
$$

is then χ^{2} distributed with $d f=n-1$ degrees of freedom (here s^{2} is the empirical variance).

Let there be given a sample x_{1}, \ldots, x_{n} of n independent observations from a normal distribution with unknown expected value μ and unknown variance σ^{2}. We wish to test the null hypothesis

$$
\mathbf{H}_{0}: \sigma^{2}=\sigma_{0}^{2}
$$

For this purpose, we compute the statistic

$$
q=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{\sigma_{0}^{2}}
$$

where s^{2} is the empirical variance.
The significance probability can now be read from the following table where $F_{\chi^{2}}$ is the distribution function of the χ^{2} distribution with $d f=n-1$ degrees of freedom (Table B.3).

Alternative hypothesis	Significance probability
$\mathbf{H}_{1}: \sigma^{2}>\sigma_{0}^{2}$	$1-F_{\chi^{2}}(q)$
$\mathbf{H}_{1}: \sigma^{2}<\sigma_{0}^{2}$	$F_{\chi^{2}}(q)$
$\mathbf{H}_{1}: \sigma^{2} \neq \sigma_{0}^{2}$	$2 \cdot \min \left\{F_{\chi^{2}}(q), 1-F_{\chi^{2}}(q)\right\}$

Normally, \mathbf{H}_{0} is rejected if the significance probability is smaller than 5%.

Note: In practice, we always test against the alternative hypothesis $\mathbf{H}_{1}: \sigma^{2}>\sigma_{0}^{2}$.

Download free ebooks at bookboon.com

17.4 Example

Consider the following twenty observations originating from a normal distribution with unknown expected value and variance:

91	97	98	112	91	97	116	108	108	100
107	98	92	103	100	99	98	104	104	97

We wish to test the null hypothesis
\mathbf{H}_{0} : the standard deviation is at most 5 (i.e. the variance is at most 25)
against the alternative hypothesis
\mathbf{H}_{1} : the standard deviation is greater than 5 (i.e. the variance is greater than 25).
The empirical variance is found to be $s^{2}=45.47$ and we thus find the statistic

$$
q=\frac{(20-1) \cdot 45.47}{5^{2}}=34.56
$$

By looking up in Table B. 3 under $d f=19$ degrees of freedom, we find a significance probability around 2%. We can thus reject \mathbf{H}_{0}.
(Actually, the observations came from a normal distribution with expected value $\mu=100$ and standard deviation $\sigma=6$. The test is thus remarkably sensitive.)

17.5 Two samples, known variances, $\mathbf{H}_{0}: \mu_{1}=\mu_{2}$

Let there be given a sample x_{1}, \ldots, x_{n} from a normal distribution with unknown expected value μ_{1} and known variance σ_{1}^{2}. Let there in addition be given a sample y_{1}, \ldots, y_{m} from a normal distribution with unknown expected value μ_{2} and known variance σ_{2}^{2}. It is assumed that the two samples are independent of each other.

We wish to test the null hypothesis

$$
\mathbf{H}_{0}: \mu_{1}=\mu_{2}
$$

For this purpose, we compute the statistic

$$
u=\frac{\bar{x}-\bar{y}}{\sqrt{\sigma_{1}^{2} / n+\sigma_{2}^{2} / m}} .
$$

The significance probability is read from the following table where Φ is the distribution function of the standard normal distribution (Table B.3).

Alternative hypothesis	Significance probability
$\mathbf{H}_{1}: \mu_{1}>\mu_{2}$	$\Phi(-u)$
$\mathbf{H}_{1}: \mu_{1}<\mu_{2}$	$\Phi(u)$
$\mathbf{H}_{1}: \mu_{1} \neq \mu_{2}$	$2 \cdot \Phi(-\|u\|)$

Normally, we reject \mathbf{H}_{0} if the significance probability is smaller than 5%.

Note: In real life, the preconditions of this test are rarely met.

17.6 Two samples, unknown variances, $\mathbf{H}_{0}: \mu_{1}=\mu_{2}$ (Fisher-Behrens)

Let the situation be as in section 17.5 , but suppose that the variances σ_{1}^{2} and σ_{2}^{2} are unknown. The problem of finding a suitable statistic to test the null hypothesis

$$
\mathbf{H}_{0}: \mu_{1}=\mu_{2}
$$

is called the Fisher-Behrens problem and has no satisfactory solution.
If $n, m>30$, one can re-use the test from section 17.5 with the alternative statistic

$$
u^{*}=\frac{\bar{x}-\bar{y}}{\sqrt{s_{1}^{2} / n+s_{2}^{2} / m}}
$$

where s_{1}^{2} and s_{2}^{2} are the empirical variances of the x 's and y 's, respectively.

17.7 Two samples, unknown expected values, $\mathbf{H}_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$

Let there be given a sample x_{1}, \ldots, x_{n} from a normal distribution with unknown expected value μ_{1} and unknown variance σ_{1}^{2}. In addition, let there be given a sample y_{1}, \ldots, y_{m} from a normal distribution with unknown expected value μ_{2} and unknown variance σ_{2}^{2}. It is assumed that the two samples are independent of each other.

We wish to test the null hypothesis

$$
\mathbf{H}_{0}: \sigma_{1}=\sigma_{2} .
$$

For this purpose, we compute the statistic

$$
v=\frac{s_{1}^{2}}{s_{2}^{2}}=\frac{\text { empirical variance of the } x \text { 's }}{\text { empirical variance of the } y \text { 's }} .
$$

Further, put

$$
v^{*}=\max \left\{v, \frac{1}{v}\right\} .
$$

The significance probability now appears from the following table where $F_{\text {Fisher }}$ is the distribution function of Fisher's F distribution with $n-1$ degrees of freedom in the numerator and $m-1$ degrees of freedom in the denominator (Table B.5).

Alternative hypothesis	Significance probability
$\mathbf{H}_{1}: \sigma_{1}^{2}>\sigma_{2}^{2}$	$1-F_{\text {Fisher }}(v)$
$\mathbf{H}_{1}: \sigma_{1}^{2}<\sigma_{2}^{2}$	$1-F_{\text {Fisher }}(1 / v)$
$\mathbf{H}_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$	$2 \cdot\left(1-F_{\text {Fisher }}\left(v^{*}\right)\right)$

Normally, \mathbf{H}_{0} is rejected if the significance probability is smaller than 5%.
If \mathbf{H}_{0} is accepted, the common variance $\sigma_{1}^{2}=\sigma_{2}^{2}$ is estimated by the "pooled" variance

$$
s_{\mathrm{pool}}^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{m}\left(y_{i}-\bar{y}\right)^{2}}{n+m-2}=\frac{(n-1) s_{1}^{2}+(m-1) s_{2}^{2}}{n+m-2} .
$$

17.8 Two samples, unknown common variance, $\mathbf{H}_{0}: \mu_{1}=\mu_{2}$

Let there be given a sample x_{1}, \ldots, x_{n} from a normal distribution with unknown expected value μ_{1} and unknown variance σ^{2}. In addition, let there be given a sample y_{1}, \ldots, y_{m} from a normal distribution with unknown expected value μ_{2} and the same variance σ^{2}. It is assumed that the two samples are independent of each other.

We wish to test the null hypothesis

$$
\mathbf{H}_{0}: \mu_{1}=\mu_{2} .
$$

For this purpose, we compute the statistic

$$
t=\frac{\bar{x}-\bar{y}}{\sqrt{(1 / n+1 / m) s_{\mathrm{pool}}^{2}}}
$$

where $s_{\text {pool }}^{2}$ is the "pooled" variance as given in section 17.7.
The significance probability now appears from the following table where $F_{\text {Student }}$ is the dis-

Download free ebooks at bookboon.com
tribution function of Student's t distribution with $n+m-2$ degrees of freedom (Table B.4).

Alternative hypothesis	Significance probability
$\mathbf{H}_{1}: \mu_{1}>\mu_{2}$	$1-F_{\text {Student }}(t)$
$\mathbf{H}_{1}: \mu_{1}<\mu_{2}$	$1-F_{\text {Student }}(-t)$
$\mathbf{H}_{1}: \mu_{1} \neq \mu_{2}$	$2 \cdot\left(1-F_{\text {Student }}(\|t\|)\right)$

Normally, \mathbf{H}_{0} is rejected if the significance probability is smaller than 5%.

17.9 Example (comparison of two expected values)

Suppose we are given seven independent observations from a normally distributed random variable X :

$$
x_{1}=26, x_{2}=21, x_{3}=15, x_{4}=7, x_{5}=15, x_{6}=28, x_{7}=21
$$

and also four independent observations from a normally distributed random variable Y :

$$
y_{1}=29, y_{2}=31, y_{3}=17, y_{4}=22 .
$$

We wish to test the hypothesis

$$
\mathbf{H}_{0}: E(X)=E(Y) .
$$

In order to be able to test this, we need to test first whether X and Y have the same variance. We therefore test the auxiliary hypothesis

$$
\mathbf{H}_{0}^{*}: \operatorname{var}(X)=\operatorname{var}(Y)
$$

against the alternative

$$
\mathbf{H}_{1}^{*}: \operatorname{var}(X) \neq \operatorname{var}(Y) .
$$

For this purpose, we compute the statistic

$$
v=\frac{s_{1}^{2}}{s_{2}^{2}}=\frac{52.3}{41.6}=1.26
$$

as in section 17.7, as well as

$$
v^{*}=\max \left\{v, \frac{1}{v}\right\}=1.26
$$

Looking up in Table B. 5 with $7-1=6$ degrees of freedom in the numerator and $4-1=3$ degrees of freedom in the denominator shows that the significance probability is clearly greater than 20%, and we may therefore accept the auxiliary hypothesis \mathbf{H}_{0}^{*}.

Now we return to the test of \mathbf{H}_{0} against the alternative hypothesis

$$
\mathbf{H}_{1}: E(X) \neq E(Y) .
$$

The "pooled" variance is found to be

$$
s_{\mathrm{pool}}^{2}=\frac{6 s_{1}^{2}+3 s_{2}^{2}}{9}=48.8
$$

The statistic thereby becomes

$$
t=\frac{\bar{x}-\bar{y}}{\sqrt{(1 / 7+1 / 4) s_{\mathrm{pool}}^{2}}}=\frac{19-24.8}{\sqrt{(1 / 7+1 / 4) 48.8}}=-1.31
$$

Therefore, the significance probability is found to be

$$
2 \cdot\left(1-F_{\text {Student }}(|t|)\right)=2 \cdot\left(1-F_{\text {Student }}(1.31)\right) \approx 2 \cdot(1-0.90)=20 \%
$$

by looking up Student's t distribution with $7+4-2=9$ degrees of freedom in Table B.4. Consequently, we cannot reject \mathbf{H}_{0}.

18 Analysis of variance (ANOVA)

18.1 Aim and motivation

Analysis of variance, also known as ANOVA, is a clever method of comparing the mean values from more than two samples. Analysis of variance is a natural extension of the tests in the previous chapter.
$18.2 k$ samples, unknown common variance, $\mathbf{H}_{0}: \mu_{1}=\cdots=\mu_{k}$
Let X_{1}, \ldots, X_{k} be k independent, normally distributed random variables, with expected values μ_{1}, \ldots, μ_{k} and common variance σ^{2}. From each X_{i}, let there be given a sample consisting of n_{i} observations. Let \bar{x}_{j} and s_{j}^{2} be mean value and empirical variance of the sample from X_{j}.

We wish to test the null hypothesis

$$
\mathbf{H}_{0}: \mu_{1}=\cdots=\mu_{k}
$$

against all alternatives. For this purpose, we estimate the common variance σ^{2} in two different ways.

The variance estimate within the samples is

$$
s_{I}^{2}=\frac{1}{n-k} \sum_{j=1}^{k}\left(n_{j}-1\right) s_{j}^{2}
$$

The variance estimate between the samples is

$$
s_{M}^{2}=\frac{1}{k-1} \sum_{j=1}^{k} n_{j}\left(\bar{x}_{j}-\bar{x}\right)^{2}
$$

s_{I}^{2} estimates σ^{2} regardless of whether \mathbf{H}_{0} is true or not. s_{M}^{2} only estimates σ^{2} correctly if \mathbf{H}_{0} is true. If \mathbf{H}_{0} is false, then s_{M}^{2} estimates too high.

Now consider the statistic

$$
v=\frac{s_{M}^{2}}{s_{I}^{2}}
$$

The significance probability is

$$
1-F_{\text {Fisher }}(v)
$$

where $F_{\text {Fisher }}$ is the distribution function of Fisher's F distribution with $k-1$ degrees of freedom in the numerator and $n-k$ degrees of freedom in the denominator (Table B.5).

18.3 Two examples (comparison of mean values from three samples)

Let three samples be given:
sample 1: $29,28,29,21,28,22,22,29,26,26$
sample 2: $22,21,18,28,23,25,25,28,23,26$
sample 3: $24,23,26,20,33,23,26,24,27,22$
It is assumed that the samples originate from independent normal distributions with common variance. Let μ_{i} be the expected value of the i 'th normal distribution. We wish to test the null hypothesis

$$
\mathbf{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}
$$

(As a matter of fact, all the observations originate from a normal distribution with expected value 25 and variance 10 , so the test shouldn't lead to a rejection of \mathbf{H}_{0}.) We thus have $k=3$ samples each consisting of $n_{i}=10$ observations, a total of $n=30$ observations. A computation gives the following variance estimate within the samples:

$$
s_{I}^{2}=10.91
$$

Sample number	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
	29	22	24
	28	21	23
	29	18	26
	21	28	20
	28	23	33
	22	25	23
	22	25	26
	29	26	24
Mean value \bar{x}_{j}	26	23	27
Empirical variance s_{j}^{2}	26.0	26	22
$\bar{x}=24.9$		23.9	24.8
$s_{I}^{2}=\left(s_{1}^{2}+s_{2}^{2}+s_{3}^{2}\right) / 3=10.91$		(variance within samples)	
$s_{M}^{2}=5 \sum\left(\bar{x}_{j}-\bar{x}\right)^{2}=11.10$		(variance between samples)	
$v=s_{M}^{2} / s_{I}^{2}=1.02$		(statistic)	

If we add 5 to all the observations in sample 3, we get the following table instead:

Sample number	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
	29	22	29
	28	21	28
	29	18	31
	21	28	25
	28	23	38
	22	25	28
	22	25	31
	29	28	29
Mean value \bar{x}_{j}	26	23	32
Empirical variance s_{j}^{2}	26	26	27
$\bar{x}=26.6$	10.22	23.9	29.8
$s_{I}^{2}=\left(s_{1}^{2}+s_{2}^{2}+s_{3}^{2}\right) / 3=10.91$		9.88	(grand mean value)
$s_{M}^{2}=5 \sum\left(\bar{x}_{j}-\bar{x}\right)^{2}=89.43$		(variance within samples)	
$v=s_{M}^{2} / s_{I}^{2}=8.20$			(variance between samples)

Note how the variance within the samples doesn't change, whereas the variance between the samples is now far too large. Thus, the statistic $v=8.20$ also becomes large and the significance probability is seen in Table B. 5 to be less than 1%. Therefore, we reject the null hypothesis \mathbf{H}_{0} of equal expected values (which was also to be expected, since \mathbf{H}_{0} is now manifestly false).

19 The chi-squared test (or χ^{2} test)

$19.1 \chi^{2}$ test for equality of distribution

The reason why the χ^{2} distribution is so important is that it can be used to test whether a given set of observations comes from a certain distribution. In the following sections, we shall see many examples of this. The test, which is also called Pearson's χ^{2} test or χ^{2} test for goodness of fit, is carried out as follows:

1. First, divide the observations into categories. Let us denote the number of categories by k and the number of observations in the i 'th category by O_{i}. The total number of observations is thus $n=O_{1}+\cdots+O_{k}$.
2. Formulate a null hypothesis \mathbf{H}_{0}. This null hypothesis must imply what the probability p_{i} is that an observation belongs to the i 'th category.
3. Compute the statistic

$$
\chi^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

As mentioned, O_{i} is the observed number in the i 'th category. Further, E_{i} is the expected number in the i 'th category (expected according to the null hypothesis, that is): $E_{i}=n p_{i}$. Incidentally, the statistic $\chi=\sqrt{\chi^{2}}$ is sometimes called the discrepancy.

4. Find the significance probability

$$
P=1-F\left(\chi^{2}\right)
$$

where $F=F_{\chi^{2}}$ is the distribution function of the χ^{2} distribution with $d f$ degrees of freedom (look up in Table B.3). \mathbf{H}_{0} is rejected if P is smaller than 5% (or whatever significance level one chooses). The number of degrees of freedom is normally $d f=k-1$, i.e. one less than the number of categories. If, however, one uses the observations to estimate the probability parameters p_{i} of the null hypothesis, $d f$ becomes smaller.

Remember: Each estimated parameter costs one degree of freedom.

Note: It is logical to reject H_{0} if χ^{2} is large, because this implies that the difference between the

Download free ebooks at bookboon.com
observed and the expected numbers is large.

19.2 The assumption of normal distribution

Since the χ^{2} test rests upon a normal approximation, it only applies provided there are not too few observations.

Remember: The χ^{2} test applies if the expected number E_{i} is at least five in each category. If, however, there are more than five categories, an expected number of at least three in each category suffices.

19.3 Standardized residuals

If the null hypothesis regarding equality of distribution is rejected by a χ^{2} test, this was because some of the observed numbers deviated widely from the expected numbers. It is then interesting to investigate exactly which observed numbers are extreme. For this purpose, we compute the standardized residuals

$$
r_{i}=\frac{O_{i}-n p_{i}}{\sqrt{n p_{i}\left(1-p_{i}\right)}}=\frac{O_{i}-E_{i}}{\sqrt{E_{i}\left(1-p_{i}\right)}}
$$

for each category. If the null hypothesis were true, each r_{i} would be normally distributed with expected value $\mu=0$ and standard deviation $\sigma=1$. Therefore:

Remember: Standardized residuals numerically greater than 2 are signs of an extreme observed number.

It can very well happen that standardized residuals numerically greater than 2 occur even though the χ^{2} test does not lead to rejection of the null hypothesis. This does not mean that the null hypothesis should be rejected after all. In particular when one has a large number of categories, it will not be unusual to find some large residuals.

Warning: Only compute the standardized residuals if the null hypothesis has been rejected by a χ^{2} test.

19.4 Example (women with five children)

EXERCISE. A hospital has registered the sex of the children of 1045 women who each have five children. Result:

	O_{i}
5 girls	58
4 girls +1 boy	149
3 girls +2 boys	305
2 girls +3 boys	303
1 girl +4 boys	162
5 boys	45

Test the hypothesis \mathbf{H}_{0} that, at every birth, the probability of a boy is the same as the probability of a girl.

Solution. If \mathbf{H}_{0} is true, the above table consists of 1045 observations from a $\operatorname{Bin}(5,1 / 2)$ distribution. The point probabilities in a $\operatorname{Bin}(5,1 / 2)$ distribution are

	p_{i}
5 girls	0.0313
4 girls +1 boy	0.1563
3 girls +2 boys	0.3125
2 girls +3 boys	0.3125
1 girl +4 boys	0.1563
5 boys	0.0313

The expected numbers $E_{i}=1045 \cdot p_{i}$ then become

	E_{i}
5 girls	32.7
4 girls +1 boy	163.3
3 girls +2 boys	326.6
2 girls +3 boys	326.6
1 girl +4 boys	163.3
5 boys	32.7

The statistic is computed:

$$
\begin{aligned}
\chi^{2}= & \frac{(58-32.7)^{2}}{32.7}+\frac{(149-163.3)^{2}}{163.3}+\frac{(305-326.6)^{2}}{326.6}+ \\
& \frac{(303-326.6)^{2}}{326.6}+\frac{(162-163.3)^{2}}{163.3}+\frac{(45-32.7)^{2}}{32.7}=28.6 .
\end{aligned}
$$

Since the observations are divided into six categories, we compare the statistic with the χ^{2} distribution with $d f=6-1=5$ degrees of freedom. Table B. 3 shows that the significance probability is well below 0.5%. We can therefore with great confidence reject the hypothesis that the boy-girl ratio is $\operatorname{Bin}(5,1 / 2)$ distributed.

Let us finally compute the standardized residuals:

	r_{i}
5 girls	4.5
4 girls +1 boy	-1.2
3 girls +2 boys	-1.4
2 girls +3 boys	-1.6
1 girl +4 boys	-0.1
5 boys	2.2

We note that it is the numbers of women with five children of the same sex which are extreme and make the statistic large.

19.5 Example (election)

Exercise. At the election for the Danish parliament in February 2005, votes were distributed among the parties as follows (as percentages):

A	B	C	F	O	V	\varnothing	others
25.8	9.2	10.3	6.0	13.3	29.0	3.4	3.0

In August 2008, an opinion poll was carried out in which 1000 randomly chosen persons were asked which party they would vote for now. The result was:

A	B	C	F	O	V	\varnothing	others
242	89	98	68	141	294	43	25

Has the popularity of the different parties changed since the election?

Solution. We test the null hypothesis \mathbf{H}_{0} that the result of the opinion poll is an observation from a multinomial distribution with $k=8$ categories and probability parameters p_{i} as given in the table above. The expected observations (given the null hypothesis) are:

A	B	C	F	O	V	\varnothing	others
258	92	103	60	133	290	34	30

Download free ebooks at bookboon.com

Now we compute the statistic χ^{2} :

$$
\chi^{2}=\sum_{i=1}^{8} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=\frac{(242-258)^{2}}{258}+\cdots+\frac{(25-30)^{2}}{30}=6.15
$$

By looking up in Table B. 3 under the χ^{2} distribution with $d f=8-1=7$ degrees of freedom, it is only seen that the significance probability is below 50%. Thus, we have no statistical evidence to conclude that the popularity of the parties has changed.

Let us ignore the warning in section 19.3 and compute the standardized residuals. For category A, for example, we find

$$
r=\frac{242-1000 \cdot 0.258}{\sqrt{1000 \cdot 0.258 \cdot 0.742}}=-1.16
$$

Altogether we get

A	B	C	F	O	V	\emptyset	others
-1.16	-0.33	-0.52	1.06	0.74	0.28	1.57	-0.93

Not surprisingly, all standardized residuals are numerically smaller than 2.

19.6 Example (deaths in the Prussian cavalry)

In the period 1875-1894 the number of deaths caused by horse kicks was registered in 10 of the regiments of the Prussian cavalry. Of the total of 200 "regiment-years", there were 109 years with no deaths, 65 years with one death, 22 years with two deaths, three years with three deaths, and one year with four deaths. We wish to investigate whether these numbers come from a Poisson distribution $\operatorname{Pois}(\lambda)$.

In order to get expected numbers greater than five (or at least to come close to that), we group the years with three and four deaths into a single category and thus obtain the following observed numbers O_{i} of years with i deaths:

i	O_{i}
0	109
1	65
2	22
≥ 3	4

The intensity λ is estimated as $\hat{\lambda}=122 / 200=0.61$, since there were a total of 122 deaths during the 200 regiment-years. The point probabilities of a Pois (0.61) distribution are

i	p_{i}
0	0.543
1	0.331
2	0.101
≥ 3	0.024

The expected numbers thus become

i	E_{i}
0	108.7
1	66.3
2	20.2
≥ 3	4.8

The reader should let himself be impressed by the striking correspondence between expected and observed numbers. It is evidently superfluous to carry the analysis any further, but let us compute the statistic anyway:

$$
\chi^{2}=\frac{(109-108.7)^{2}}{108.7}+\frac{(65-66.3)^{2}}{66.3}+\frac{(22-20.2)^{2}}{20.2}+\frac{(4-4.8)^{2}}{4.8}=0.3 .
$$

Since there are four categories and we have estimated one parameter using the data, the statistic should be compared with the χ^{2} distribution with $d f=4-1-1=2$ degrees of freedom. As expected, Table B. 3 shows a significance probability well above 50%.

Incidentally, the example comes from Ladislaus von Bortkiewicz's 1898 book Das Gesetz der kleinen Zahlen.

20 Contingency tables

20.1 Definition, method

Suppose that a number of observations are given and that the observations are divided into categories according to two different criteria. The number of observations in each category can then be displayed in a contingency table. The purpose of the test presented here is to test whether there is independence between the two criteria used to categorize the observations.

METHOD. Let there be given an $r \times s$ table, i.e. a table with r rows and s columns:

a_{11}	a_{12}	\ldots	\ldots	$a_{1 s}$
a_{21}	a_{22}	\ldots	\ldots	$a_{2 s}$
\vdots	\vdots			\vdots
\vdots	\vdots			\vdots
$a_{r 1}$	$a_{r 2}$	\ldots	\ldots	$a_{r s}$

It has row sums $R_{i}=\sum_{j=1}^{s} a_{i j}$, column sums $S_{j}=\sum_{i=1}^{r} a_{i j}$, and total sum

$$
N=\sum_{i, j} a_{i j}
$$

These are the observed numbers O. The row probabilities are estimated as

$$
\hat{p}_{i .}=\frac{R_{i}}{N}
$$

and the column probabilities as

$$
\hat{p}_{j}=\frac{S_{j}}{N}
$$

If there is independence between rows and columns, the cell probabilities can be estimated as

$$
\hat{p}_{i j}=\hat{p}_{i \cdot} \cdot \hat{p}_{\cdot j}=\frac{R_{i} S_{j}}{N^{2}} .
$$

We can thus compute the expected numbers E :

$\frac{R_{1} S_{1}}{N}$	$\frac{R_{1} S_{2}}{N}$	\cdots	\cdots	$\frac{R_{1} S_{s}}{N}$
$\frac{R_{2} S_{1}}{N}$	$\frac{R_{2} S_{2}}{N}$	\cdots	\cdots	$\frac{R_{2} S_{s}}{N}$
\vdots	\vdots			\vdots
\vdots	\vdots			\vdots
$\frac{R_{r} S_{1}}{N}$	$\frac{R_{r} S_{2}}{N}$	\cdots	\cdots	$\frac{R_{r} S_{s}}{N}$

since the expected number in the (i, j) 'th cell is

$$
E=N \hat{p}_{i j}=R_{i} S_{j} / N
$$

Now we compute the statistic

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E}=\sum \frac{\left(a_{i j}-R_{i} S_{j} / N\right)^{2}}{R_{i} S_{j} / N}
$$

where the summation is carried out over each cell of the table. If the independence hypothesis holds true and the expected number is at least 5 in each cell, then the statistic is χ^{2} distributed with

$$
d f=(r-1)(s-1)
$$

degrees of freedom.

Important! If the data are given as percentages, they must be expressed as absolute numbers before insertion into the contingency table.

20.2 Standardized residuals

If the independence hypothesis is rejected by a χ^{2} test, one might, as in section 19.3 , be interested in determining which cells contain observed numbers deviating extremely from the expected numbers. The standardized residuals are computed as

$$
r_{i j}=\frac{O_{i j}-R_{i} S_{j} / n}{\sqrt{\left(R_{i} S_{j} / n\right)\left(1-R_{i} / n\right)\left(1-S_{j} / n\right)}} .
$$

If the independence hypothesis were true, each $r_{i j}$ would be normally distributed with expected value $\mu=0$ and standard deviation $\sigma=1$. Standardized residuals numerically greater than 2 are therefore signs of an extreme observed number.

20.3 Example (students' political orientation)

EXERCISE. At three Danish universities, 488 students were asked about their faculty and which party they would vote for if there were to be an election tomorrow. The result (in simplified form) was:

	A	B	C	F	O	V	\emptyset	R_{i}
Humanities	37	48	15	26	4	17	10	157
Natural Sci.	32	38	19	18	7	51	2	167
Social Sci.	32	24	15	7	12	69	5	164
S_{j}	101	110	49	51	23	137	17	488

Investigate whether there is independence between the students' political orientation and their faculty.

Solution. We are dealing with a 3×7 table and perform a χ^{2} test for independence. First, the expected numbers

$$
E=\frac{R_{i} S_{j}}{488}
$$

are computed and presented in a table:

	A	B	C	F	O	V	\emptyset
Humanities	32.5	35.4	15.8	16.4	7.4	44.1	5.5
Natural Sci.	34.6	37.6	16.8	17.5	7.9	46.9	5.8
Social Sci.	33.9	37.0	16.5	17.1	7.7	46.0	5.7

Now the statistic

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E}
$$

can be computed, since the observed numbers O are the numbers in the first table:

$$
\chi^{2}=\frac{(37-32.5)^{2}}{32.5}+\cdots+\frac{(5-5.7)^{2}}{5.7}=60.9
$$

The statistic is to be compared with a χ^{2} distribution with $d f=(3-1)(7-1)=12$ degrees of freedom. Table B. 3 shows that the significance probability is well below 0.1%, and we therefore

You've applied to your University...

Now Choose

Nido has some great options left! Live in one of our twin studios in Nido King's Cross or two bedroom studios in Nido Spitalfields.

Nido is the newest way of living student life in central London. It's not just a residence, it's a way of living that we call 'Nidology'.

Book your room and we will reward you with a $£ 50$ voucher from www.voucherexpress.co.uk voucher* to spend in London shops! To enter, make a booking with Nido online using the promotional code 'Bookboon01.' For terms and conditions, please visit:

WIN a £50 Voucher with every booking! Nido
confidently reject the independence hypothesis.
Let us now compute the standardized residuals to see in which cells the observed numbers are extreme. We use the formula for $r_{i j}$ in section 20.2 and get

	A	B	C	F	O	V	\varnothing
Humanities	1.1	2.9	-0.2	3.0	-1.6	-5.8	2.4
Natural Sci.	-0.6	0.1	0.7	0.2	-0.4	0.9	-2.0
Social Sci.	-0.5	-3.0	-0.5	-3.2	1.9	4.9	-0.4

We find that there are extreme observations in many cells.

$20.4 \quad \chi^{2}$ test for 2×2 tables

A contingency table with two rows and two columns is called a $\mathbf{2} \times \mathbf{2}$ table. Let us write the observed numbers as follows:

$$
\begin{array}{l|l}
a & b \\
\hline c & d
\end{array}
$$

The statistic thus becomes

$$
\chi^{2}=\left(\frac{a d-b c}{N}\right)^{2}\left(\frac{1}{E_{11}}+\frac{1}{E_{12}}+\frac{1}{E_{21}}+\frac{1}{E_{22}}\right)
$$

where $N=a+b+c+d$ is the total number of observations, and $E_{i j}$ is the expected number in the $i j$ 'th cell. The statistic χ^{2} is to be compared with the χ^{2} distribution with $d f=(2-1)(2-1)=1$ degree of freedom.

If we wish to perform a one-sided test of the independence hypothesis, the statistic

$$
u=\left(\frac{a d-b c}{N}\right) \sqrt{\left(\frac{1}{E_{11}}+\frac{1}{E_{12}}+\frac{1}{E_{21}}+\frac{1}{E_{22}}\right)}
$$

is used instead. Under the independence hypothesis, u will be standard normally distributed.

20.5 Fisher's exact test for 2×2 tables

Given a 2×2 table, nothing stands in the way of using the χ^{2} test, but there is a better test in this situation called Fisher's exact test. Fisher's exact test does not use any normal approximation, and may therefore still be applied when the number of expected observations in one or more of the cells is smaller than five.

METHOD. Let there be given a 2×2 table:

$$
\begin{array}{c|c}
a & b \\
\hline c & d
\end{array}
$$

with row sums $R_{1}=a+b$ and $R_{2}=c+d$ and column sums $S_{1}=a+c$ and $S_{2}=b+d$ and total sum $N=R_{1}+R_{2}=S_{1}+S_{2}=a+b+c+d$. We test the independence hypothesis \mathbf{H}_{0} against
the alternative hypothesis \mathbf{H}_{1} that the "diagonal probabilities" p_{11} and p_{22} are greater than what they would have been had there been independence. (This situation can always be arranged by switching the rows if necessary.) The conditional probability of obtaining exactly the 2×2 table above, given that the row sums are R_{1} and R_{2}, and that the column sums are S_{1} and S_{2}, is

$$
P_{\text {conditional }}=\frac{R_{1}!R_{2}!S_{1}!S_{2}!}{N!a!b!c!d!}
$$

The significance probability in Fisher's exact test is the sum of $P_{\text {conditional }}$ taken on all 2×2 tables with the same row and column sums as in the given table, and which are at least as extreme as the given table:

$$
P_{\text {Fisher }}=\sum_{i=0}^{\min \{b, c\}} \frac{R_{1}!R_{2}!S_{1}!S_{2}!}{N!(a+i)!(b-i)!(c-i)!(d+i)!} .
$$

The independence hypothesis \mathbf{H}_{0} is rejected if $P_{\text {Fisher }}$ is smaller than 5% (or whatever significance level one has chosen).

ADDENDUM: If a two-sided test is performed, i.e. if one does not test against any specific alternative hypothesis, the significance probability becomes $2 \cdot P_{\text {Fisher }}$. It is then necessary that the 2×2 table is written in such a way that the observed numbers in the diagonal are greater than the expected numbers (this can always be obtained by switching the rows if necessary).

20.6 Example (Fisher's exact test)

In a medical experiment concerning alternative treatments, ten patients are randomly divided into two groups with five patients in each. The patients in the first group receive acupuncture, while the patients in the other group receive no treatment. It is then seen which patients are fit or ill at the end of the experiment. The result can be presented in a 2×2 table:

	fit	ill
acupuncture	4	1
no treatment	2	3

The significance probability in Fisher's exact test is computed as

$$
P_{\text {Fisher }}=\sum_{i=0}^{1} \frac{5!5!6!4!}{10!(4+i)!(1-i)!(2-i)!(3+i)!}=26 \% .
$$

With such a large significance probability, there is no evidence that acupuncture had any effect.

21 Distribution-free tests

In all tests considered so far, we have known something about the distribution from which the given samples originated. We knew, for example, that the distribution was a normal distribution even though we didn't know the expected value or the standard deviation.

Sometimes, though, one knows nothing at all about the underlying distribution. It then becomes necessary to use a distribution-free test (also known as a non-parametric test). The two examples considered in this chapter are due to Frank Wilcoxon (1892-1965).

21.1 Wilcoxon's test for one set of observations

Let there be given n independent observations d_{1}, \ldots, d_{n} from an unknown distribution. We test the null hypothesis
\mathbf{H}_{0} : The unknown distribution is symmetric around 0.
Each observation d_{i} is given a rank which is one of the numbers $1,2, \ldots, n$. The observation with the smallest numerical value is assigned rank 1 , the observation with the second smallest numerical value is assigned rank 2 , etc. Now define the statistics
$t_{+}=\sum\left(\right.$ ranks corresponding to positive $\left.d_{i}\right)$,
$t_{-}=\sum\left(\right.$ ranks corresponding to negative $\left.d_{i}\right)$.
(One can check at this point whether $t_{+}+t_{-}=n(n+1) / 2$; if not, one has added the numbers incorrectly.) If \mathbf{H}_{0} holds true, then t_{+}and t_{-}should be more or less equal. When to reject \mathbf{H}_{0} depends on which alternative hypothesis is tested against.

If we test \mathbf{H}_{0} against the alternative hypothesis
\mathbf{H}_{1} : The unknown distribution primarily gives positive observations,
then \mathbf{H}_{0} is rejected if t_{-}is extremely small. Choose a significance level α and consult Table B. 8

under n and α. If t_{-}is smaller than or equal to the table value, \mathbf{H}_{0} is rejected. If t_{-}is greater than the table value, \mathbf{H}_{0} is accepted.

If we test \mathbf{H}_{0} against the alternative hypothesis

\mathbf{H}_{1} : The unknown distribution primarily gives negative observations,

then \mathbf{H}_{0} is rejected if t_{+}is extremely small. Choose a significance level α and consult Table B. 8 under n and α. If t_{+}is smaller than or equal to the table value, \mathbf{H}_{0} is rejected. If t_{+}is greater than the table value, \mathbf{H}_{0} is accepted.

If we don't test \mathbf{H}_{0} against any particular alternative hypothesis, the null hypothesis is rejected if the minimum $t:=\min \left\{t_{+}, t_{-}\right\}$is extremely small. Choose a significance level α and consult Table B. 8 under n and $\alpha / 2$ (if, for example, we choose the significance level $\alpha=5 \%$, then we look up in the table under n and 0.025). If t is smaller than or equal to the table value, we reject \mathbf{H}_{0}. If t is greater than the table value, we accept \mathbf{H}_{0}.

The above test applies in particular when two sets of observations x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} are given and d_{i} is the difference between the "before values" x_{i} and the "after values" y_{i}, i.e. $d_{i}=x_{i}-y_{i}$. If there are only random, unsystematic differences between the before and after values, it follows that the d_{i} 's are distributed symmetrically around 0 .

21.2 Example

An experiment involving ten patients is carried out to determine whether physical exercise lowers blood pressure. At the beginning of the experiment, the patients' blood pressures are measured. These observations are denoted x_{1}, \ldots, x_{10}. After a month of exercise, the blood pressures are measured again. These observations are denoted y_{1}, \ldots, y_{10}. We now test the null hypothesis
\mathbf{H}_{0} : Physical exercise has no influence on blood pressure. The ten differences $d_{i}=x_{i}-y_{i}$ are therefore distributed symmetrically around 0 ,
against the alternative hypothesis
\mathbf{H}_{1} : Physical exercise causes the blood pressure to decrease. The ten differences d_{i} are therefore primarily positive.

We compute the ranks and t_{+}and t_{-}:

Person	1	2	3	4	5	6	7	8	9	10
Before x_{i}	140	125	110	130	170	165	135	140	155	145
After y_{i}	137	137	102	104	172	125	140	110	140	126
Difference d_{i}	3	-12	8	26	-2	40	-5	30	15	19
Rank	2	5	4	8	1	10	3	9	6	7
$t_{+}=2+4+6+7+8+9+10=46$,										
$t_{-}=1+3+5=9$.										

We shall reject \mathbf{H}_{0} if $t_{-}=9$ is extremely small. Table B. 8 with significance level $\alpha=5 \%$ shows that "extremely small" means $\leqq 10$. Conclusion: The test shows that the null hypothesis \mathbf{H}_{0} must be rejected against the alternative hypothesis \mathbf{H}_{1} at significance level 5%.

21.3 The normal approximation to Wilcoxon's test for one set of observations

Table B. 8 includes values up to $n=50$. If the number of observations is greater, a normal distribution approximation can be applied. Indeed, if the null hypothesis is true, the statistic t_{+}is approximately normally distributed with expected value

$$
\mu=\frac{n(n+1)}{4}
$$

and standard deviation

$$
\sigma=\sqrt{\frac{n(n+1)(2 n+1)}{24}} .
$$

The significance probability is therefore found by comparison of the statistic

$$
z=\frac{t_{+}-\mu}{\sigma}
$$

with Table B. 2 of the standard normal distribution.

EXAMPLE. Let us use the normal approximation to find the significance probability in the previous example (even though n here is smaller than 50 and the approximation therefore is not highly precise). We get $\mu=27.5$ and $\sigma=9.81$. The statistic therefore becomes $z=1.89$, which gives a significance probability of 2.9%. The conclusion is thus the same, namely that \mathbf{H}_{0} is rejected at significance level 5%.

21.4 Wilcoxon's test for two sets of observations

Suppose we have two sets x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{m} of independent observations. We test the null hypothesis
\mathbf{H}_{0} : The observations come from the same distribution.
Each of the $n+m$ observations is assigned a rank which is one of the numbers $1,2, \ldots, n+m$. The observation with the smallest numerical value is assigned rank 1 , the observation with the second smallest numerical value is assigned rank 2, etc. Define the statistic
$t_{x}=\sum\left(\right.$ ranks of the $\left.x_{i}{ }^{\prime} \mathrm{s}\right)$.
Whether \mathbf{H}_{0} is rejected or not depends on which alternative hypothesis we test against.
If we test \mathbf{H}_{0} against the alternative hypothesis
\mathbf{H}_{1} : The x_{i} 's are primarily smaller than the y_{i} 's,
then \mathbf{H}_{0} is rejected if t_{x} is extremely small. Look up in Table B. 9 under n and m. If t_{x} is smaller than or equal to the table value, then \mathbf{H}_{0} is rejected at significance level $\alpha=5 \%$. If t_{x} is greater
than the table value, then \mathbf{H}_{0} is accepted at significance level $\alpha=5 \%$.
If we test \mathbf{H}_{0} against the alternative hypothesis
\mathbf{H}_{1} : The x_{i} 's are primarily greater than the y_{i} 's,
then one has to switch the roles of x_{i} 's and y_{i} 's and continue as described above.
If we don't test \mathbf{H}_{0} against any particular alternative hypothesis, then the null hypothesis is rejected if the minimum

$$
t:=\min \left\{t_{x}, n(n+m+1)-t_{x}\right\}
$$

is extremely small. Look up in Table B. 9 under n and m. If t is smaller than or equal to the table value, then \mathbf{H}_{0} is rejected at significance level $\alpha=10 \%$. If t is greater than the table value, then \mathbf{H}_{0} is accepted at significance level 10%.

21.5 The normal approximation to Wilcoxon's test for two sets of observations

Table B. 9 applies for moderate values of n and m. If the number of observations is greater, one can use a normal distribution approximation. Indeed, if the null hypothesis holds true, the statistic

t_{x} is approximately normally distributed with expected value

$$
\mu=\frac{n(n+m+1)}{2}
$$

and standard deviation

$$
\sigma=\sqrt{\frac{n m(n+m+1)}{12}}
$$

The significance probability is then found by comparing the statistic

$$
z=\frac{t_{x}-\mu}{\sigma}
$$

with Table B. 2 of the standard normal distribution.

22 Linear regression

22.1 The model

Suppose we have a sample consisting of n pairs of observations

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

We propose the model that each y_{i} is an observation from a random variable

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+E_{i}
$$

where the E_{i} 's are independent normally distributed random variables with expected value 0 and common variance σ^{2}. Thus we can express each y_{i} as

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+e_{i}
$$

where e_{i} is an observation from E_{i}. We call y_{i} the response variable, x_{i} the declaring variable and e_{i} the remainder term.

22.2 Estimation of the parameters β_{0} and β_{1}

Let \bar{x} be the mean value of the x_{i} 's and \bar{y} the mean value of the y_{i} 's. Define the sum of products of errors as

$$
S P E_{x y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

and the sum of squares of errors as

$$
S S E_{x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

The parameters β_{0} and β_{1} of the regression equation are now estimated as

$$
\left\{\begin{array}{l}
\hat{\beta}_{1}=\frac{S P E_{x y}}{S S E_{x}} \\
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
\end{array}\right.
$$

22.3 The distribution of the estimators

If the model's assumptions are met, the estimator $\hat{\beta}_{0}$ is normally distributed with expected value β_{0} (the estimator thus is unbiased) and variance $\sigma^{2}\left(1 / n+\bar{x}^{2} / S S E_{x}\right)$. In other words, it holds that

$$
\hat{\beta}_{0} \sim N\left(\beta_{0}, \sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S S E_{x}}\right)\right) .
$$

Moreover, the estimator $\hat{\beta}_{1}$ is normally distributed with expected value β_{1} (this estimator is therefore unbiased too) and variance $\sigma^{2} / S S E_{x}$. In other words, it holds that

$$
\hat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma^{2}}{S S E_{x}}\right)
$$

22.4 Predicted values \hat{y}_{i} and residuals \hat{e}_{i}

From the estimates $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$, the predicted value of y_{i} can be computed for each i as

$$
\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i} .
$$

The i 'th residual \hat{e}_{i} is the difference between the actual value y_{i} and the predicted value \hat{y}_{i} :

$$
\hat{e}_{i}=y_{i}-\hat{y}_{i} .
$$

The residual \hat{e}_{i} is an estimate of the remainder term e_{i}.

22.5 Estimation of the variance σ^{2}

We introduce the sum of squares of residuals as

$$
S S R=\sum_{i=1}^{n} \hat{e}_{i}^{2} .
$$

The variance σ^{2} of the remainder terms is now estimated as

$$
s^{2}=\frac{S S R}{n-2}
$$

This estimator is unbiased (but different from the maximum likelihood estimator).

22.6 Confidence intervals for the parameters β_{0} and β_{1}

After estimating the parameters β_{0} and β_{1}, we can compute the confidence intervals with confidence level $1-\alpha$ around the estimates $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$. These are

$$
\left\{\begin{array}{l}
\hat{\beta}_{0} \pm t_{1-\alpha / 2} s \sqrt{\frac{1}{n}+\frac{\bar{x}^{2}}{S S E_{x}}} \\
\hat{\beta}_{1} \pm t_{1-\alpha / 2} \frac{s}{\sqrt{S S E_{x}}}
\end{array}\right.
$$

The number $t_{1-\alpha / 2}$ is determined by $F\left(u_{1-\alpha / 2}\right)=1-\alpha / 2$, where F is the distribution function of Student's t distribution with $n-1$ degrees of freedom (see also section 15.8).

22.7 The determination coefficient R^{2}

In order to investigate how well the model with the estimated parameters describes the actual observations, we compute the determination coefficient

$$
R^{2}=\frac{S S E_{y}-S S R}{S S E_{y}} .
$$

R^{2} lies in the interval $[0,1]$ and measures the part of the variation of the y_{i} 's which the model describes as a linear function of the x_{i} 's.

Remember: The greater the determination coefficient R^{2} is, the better the model describes the observations.

22.8 Predictions and prediction intervals

Let there be given a real number x_{0}. The function value

$$
y_{0}=\beta_{0}+\beta_{1} x_{0}
$$

is then estimated, or predicted, as

$$
\hat{y}_{0}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{0} .
$$

The confidence interval, or prediction interval, with confidence level $1-\alpha$ around the estimate \hat{y}_{0} is

$$
\hat{y}_{0} \pm t_{1-\alpha / 2} s \sqrt{1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S S E_{x}}}
$$

The number $t_{1-\alpha / 2}$ is determined by $F\left(u_{1-\alpha / 2}\right)=1-\alpha / 2$, where F is the distribution function of Student's t distribution with $n-2$ degrees of freedom (see also section 15.8).

22.9 Overview of formulae

$$
\begin{aligned}
& S_{x}=\sum_{i=1}^{n} x_{i} \\
& \bar{x}=S_{x} / n \\
& S S_{x}=\sum_{i=1}^{n} x_{i}^{2} \\
& S S E_{x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=S S_{x}-S_{x}^{2} / n \\
& s_{x}^{2}=S S E_{x} /(n-1) \\
& S P_{x y}=\sum_{i=1}^{n} x_{i} y_{i} \\
& S P E_{x y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=S P_{x y}-S_{x} S_{y} / n \\
& \hat{\beta}_{1}=S P E_{x y} / S S E_{x} \\
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x} \\
& \hat{y}_{i}=\hat{b e} e_{0}+\hat{\beta}_{1} x_{i} \\
& \hat{e}_{i}=y_{i}-\hat{y}_{i} \\
& S S R=\sum_{i=1}^{n} \hat{e}_{i}^{2}=S S E_{y}-S P E_{x y}^{2} / S S E_{x} \\
& s^{2}=S S R /(n-2) \\
& R^{2}=1-S S R / S S E_{y}
\end{aligned}
$$

The sum of the x_{i} 's
The mean value of the x_{i} 's
The sum of the squares of the x_{i} 's
The sum of the squares of the errors
Empirical variance of the x_{i} 's
The sum of the products
The sum of the products of the errors
The estimate of β_{1}
The estimate of β_{0}
Predicted value of y_{i}
The i 'th residual
The sum of the squares of the residuals
The estimate σ^{2}
The determination coefficient

22.10 Example

ExErcISE. It is claimed that the temperature in the Andes Mountains decreases by six degrees per 1000 metres. The following temperatures were measured simultaneously at ten different localities
in the same region:

Altitude x_{i} (metres)	Temperature y_{i} $($ degrees)
500	15
1000	14
1500	11
2000	6
2500	-1
3000	2
3500	0
4000	-4
4500	-8
5000	-14

We use a linear regression model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+e_{i}
$$

where the remainder terms e_{i} are independent normally distributed with expected value 0 and the same (unknown) variance σ^{2}.

1) Estimate the parameters β_{0} and β_{1}.
2) Determine the confidence interval with confidence level 95% for β_{1}.
3) Can the hypothesis $\mathbf{H}_{0}: \beta_{1}=-0.006$ be accepted?
4) To how large degree can the difference of temperature be explained as a linear function of the altitude?

Solution. First we perform the relevant computations:

$$
\begin{array}{ll}
S_{x}=\sum_{i=1}^{10} x_{i}=27500 & S_{y}=\sum_{i=1}^{10} y_{i}=21 \\
\bar{x}=S_{x} / 10=2750 & \bar{y}=S_{y} / 10=2.1 \\
S S_{x}=\sum_{i=1}^{10} x_{i}^{2}=96250000 & S S_{y}=\sum_{i=1}^{10} y_{i}^{2}=859 \\
S S E_{x}=S S_{x}-S_{x}^{2} / 10=20625000 & S S E_{y}=S S_{y}-S_{y}^{2} / 10=814.9 \\
S P_{x y}=\sum_{i=1}^{10} x_{i} y_{i}=-68500 & S P E_{x y}=S P_{x y}-S_{x} S_{y} / 10=-126250 \\
\hat{\beta}_{1}=S P E_{x y} / S S E_{x}=-0.0061 & \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}=18.9 \\
S S R=S S E_{y}-S P E_{x y}^{2} / S S E_{x}=42.1 & s^{2}=S S R / 8=5.26 \\
R^{2}=1-S S R / S S E_{y}=0.948 &
\end{array}
$$

1) It appears directly from the computations that the estimates of β_{0} and β_{1} are

$$
\hat{\beta}_{0}=18.9, \hat{\beta}_{1}=-0.0061 .
$$

2) Table B.4, under $d f=10-1=9$ degrees of freedom, shows that $t_{0.975}=2.26$ (see also section 15.8). The confidence interval around $\hat{\beta}_{1}$ thus becomes

$$
\left[-0.0061-2.26 \frac{\sqrt{5.26}}{\sqrt{20625000}},-0.0061+2.26 \frac{\sqrt{5.26}}{\sqrt{20625000}}\right]=[-0.0072,-0.0050]
$$

3) The hypothesis $\mathbf{H}_{0}: \beta_{1}=-0.006$ is accepted, since this value lies within the confidence interval.
4) The part of the temperature difference describable as a linear function of the altitude is nothing other than the determination coefficient

$$
R^{2}=94.8 \%
$$

The fact that R^{2} is large (close to 100%) shows that the actual temperatures are quite close to those predicted. This also appears from the figure below, which shows that the actual temperatures are very close to the regression line:

Download free ebooks at bookboon.com

A Overview of discrete distributions

Distribution	Description	Values	Point probabilities	Mean value	Variance
Binomial distribution $\operatorname{Bin}(n, p)$	Number of successes in n tries	$k=0,1, \ldots, n$	$\binom{n}{k} p^{k} q^{n-k}$	$n p$	$n p q$
Poisson distribution Pois (λ)	Number of spontaneous events in a time interval	$k=0,1, \ldots$	$\frac{\lambda^{k}}{k!} e^{-\lambda}$	λ	λ
Geometrical distribution Geo(p)	Number of failures before success	$k=0,1, \ldots$	$q^{k} p$	q / p	q / p^{2}
Hypergeometrical distribution $\mathrm{HG}(n, r, N)$	Number of red balls among n balls	$\begin{aligned} & k=0, \ldots \\ & \ldots, \min \{n, r\} \end{aligned}$	$\frac{\binom{r}{k}\binom{s}{n-k}}{\binom{N}{n}}$	$n r / N$	$\frac{n r s(N-n)}{N^{2}(N-1)}$
Negative binomial distribution $\mathrm{NB}(n, p)$	Number of failures before the n 'th success	$k=0,1, \ldots$	$\binom{n+k-1}{n-1} \cdot p^{n} \cdot q^{k}$	$n q / p$	$n q / p^{2}$
Multi- nomial- distribution $\operatorname{Mult}(n, \ldots)$	Number of sample points of each type	$\left(k_{1}, \ldots, k_{r}\right)$ where $\sum k_{i}=n$	$\binom{n}{k_{1} \cdots k_{r}} \cdot \prod p_{i}^{k_{i}}$	-	-

B Tables

B. 1 How to read the tables

Table B. 2 gives values of the distribution function

$$
\Phi(u)=\int_{-\infty}^{u} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} t^{2}\right) d t
$$

of the standard normal distribution.

Table B. 3 gives values of x for which the distribution function $F=F_{\chi^{2}}$ of the χ^{2} distribution with $d f$ degrees of freedom takes the values $F(x)=0.500, F(x)=0.600$, etc.

Table B. 4 gives values of x for which the distribution function $F=F_{\text {Student }}$ of Student's t distribution with $d f$ degrees of freedom takes the values $F(x)=0.600, F(x)=0.700$, etc.

Table B.5, Table B. 6 and Table B. 7 give values of x for which the distribution function $F=$ $F_{\text {Fisher }}$ of Fisher's F distribution with n degrees of freedom in the numerator (top line) and m degrees of freedom in the denominator (leftmost column) takes the values $F(x)=0.90$, $F(x)=0.95$, and $F(x)=0.99$, respectively.

Download free ebooks at bookboon.com

Table B. 8 and Table B. 9 give critical values for Wilcoxon's tests for one and two sets of observations. See Chapter 21 for further details.

B. 2 The standard normal distribution

\mathbf{u}	$\mathbf{\Phi}(\mathbf{u})$	$\mathbf{\Phi}(-\mathbf{u})$
0.00	0.5000	0.5000
0.01	0.5040	0.4960
0.02	0.5080	0.4920
0.03	0.5120	0.4880
0.04	0.5160	0.4840
0.05	0.5199	0.4801
0.06	0.5239	0.4761
0.07	0.5279	0.4721
0.08	0.5319	0.4681
0.09	0.5359	0.4641
0.10	0.5398	0.4602
0.11	0.5438	0.4562
0.12	0.5478	0.4522
0.13	0.5517	0.4483
0.14	0.5557	0.4443
0.15	0.5596	0.4404
0.16	0.5636	0.4364
0.17	0.5675	0.4325
0.18	0.5714	0.4286
0.19	0.5753	0.4247
0.20	0.5793	0.4207
0.21	0.5832	0.4168
0.22	0.5871	0.4129
0.23	0.5910	0.4090
0.24	0.5948	0.4052
0.25	0.5987	0.4013
0.26	0.6026	0.3974
0.27	0.6064	0.3936
0.28	0.6103	0.3897
0.29	0.6141	0.3859
0.30	0.6179	0.3821
0.31	0.6217	0.3783
0.32	0.6255	0.3745
0.33	0.6293	0.3707
0.34	0.6331	0.3669
0.35	0.6368	0.3632

\mathbf{u}	$\boldsymbol{\Phi}(\mathbf{u})$	$\boldsymbol{\Phi}(-\mathbf{u})$
0.36	0.6406	0.3594
0.37	0.6443	0.3557
0.38	0.6480	0.3520
0.39	0.6517	0.3483
0.40	0.6554	0.3446
0.41	0.6591	0.3409
0.42	0.6628	0.3372
0.43	0.6664	0.3336
0.44	0.6700	0.3300
0.45	0.6736	0.3264
0.46	0.6772	0.3228
0.47	0.6808	0.3192
0.48	0.6844	0.3156
0.49	0.6879	0.3121
0.50	0.6915	0.3085
0.51	0.6950	0.3050
0.52	0.6985	0.3015
0.53	0.7019	0.2981
0.54	0.7054	0.2946
0.55	0.7088	0.2912
0.56	0.7123	0.2877
0.57	0.7157	0.2843
0.58	0.7190	0.2810
0.59	0.7224	0.2776
0.60	0.7257	0.2743
0.61	0.7291	0.2709
0.62	0.7324	0.2676
0.63	0.7357	0.2643
0.64	0.7389	0.2611
0.65	0.7422	0.2578
0.66	0.7454	0.2546
0.67	0.7486	0.2514
0.68	0.7517	0.2483
0.69	0.7549	0.2451
0.70	0.7580	0.2420
0.71	0.7611	0.2389

\mathbf{u}	$\mathbf{\Phi}(\mathbf{u})$	$\mathbf{\Phi}(-\mathbf{u})$
0.72	0.7642	0.2358
0.73	0.7673	0.2327
0.74	0.7704	0.2296
0.75	0.7734	0.2266
0.76	0.7764	0.2236
0.77	0.7794	0.2206
0.78	0.7823	0.2177
0.79	0.7852	0.2148
0.80	0.7881	0.2119
0.81	0.7910	0.2090
0.82	0.7939	0.2061
0.83	0.7967	0.2033
0.84	0.7995	0.2005
0.85	0.8023	0.1977
0.86	0.8051	0.1949
0.87	0.8078	0.1922
0.88	0.8106	0.1894
0.89	0.8133	0.1867
0.90	0.8159	0.1841
0.91	0.8186	0.1814
0.92	0.8212	0.1788
0.93	0.8238	0.1762
0.94	0.8264	0.1736
0.95	0.8289	0.1711
0.96	0.8315	0.1685
0.97	0.8340	0.1660
0.98	0.8365	0.1635
0.99	0.8389	0.1611
1.00	0.8413	0.1587
1.01	0.8438	0.1562
1.02	0.8461	0.1539
1.03	0.8485	0.1515
1.04	0.8508	0.1492
1.05	0.8531	0.1469
1.06	0.8554	0.1446
1.07	0.8577	0.1423

\mathbf{u}	$\mathbf{\Phi}(\mathbf{u})$	$\mathbf{\Phi}(-\mathbf{u})$
1.08	0.8599	0.1401
1.09	0.8621	0.1379
1.10	0.8643	0.1357
1.11	0.8665	0.1335
1.12	0.8686	0.1314
1.13	0.8708	0.1292
1.14	0.8729	0.1271
1.15	0.8749	0.1251
1.16	0.8770	0.1230
1.17	0.8790	0.1210
1.18	0.8810	0.1190
1.19	0.8830	0.1170
1.20	0.8849	0.1151
1.21	0.8869	0.1131
1.22	0.8888	0.1112
1.23	0.8907	0.1093
1.24	0.8925	0.1075
1.25	0.8944	0.1056
1.26	0.8962	0.1038
1.27	0.8980	0.1020
1.28	0.8997	0.1003
1.29	0.9015	0.0985
1.30	0.9032	0.0968
1.31	0.9049	0.0951
1.32	0.9066	0.0934
1.33	0.9082	0.0918
1.34	0.9099	0.0901
1.35	0.9115	0.0885
1.36	0.9131	0.0869
1.37	0.9147	0.0853
1.38	0.9162	0.0838
1.39	0.9177	0.0823
1.40	0.9192	0.0808
1.41	0.9207	0.0793
1.42	0.9222	0.0778
1.43	0.9236	0.0764
1.44	0.9251	0.0749

\mathbf{u}	$\mathbf{\Phi}(\mathbf{u})$	$\mathbf{\Phi}(-\mathbf{u})$
1.45	0.9265	0.0735
1.46	0.9279	0.0721
1.47	0.9292	0.0708
1.48	0.9306	0.0694
1.49	0.9319	0.0681
1.50	0.9332	0.0668
1.51	0.9345	0.0655
1.52	0.9357	0.0643
1.53	0.9370	0.0630
1.54	0.9382	0.0618
1.55	0.9394	0.0606
1.56	0.9406	0.0594
1.57	0.9418	0.0582
1.58	0.9429	0.0571
1.59	0.9441	0.0559
1.60	0.9452	0.0548
1.61	0.9463	0.0537
1.62	0.9474	0.0526
1.63	0.9484	0.0516
1.64	0.9495	0.0505
1.65	0.9505	0.0495
1.66	0.9515	0.0485
1.67	0.9525	0.0475
1.68	0.9535	0.0465
1.69	0.9545	0.0455
1.70	0.9554	0.0446
1.71	0.9564	0.0436
1.72	0.9573	0.0427
1.73	0.9582	0.0418
1.74	0.9591	0.0409
1.75	0.9599	0.0401
1.76	0.9608	0.0392
1.77	0.9616	0.0384
1.78	0.9625	0.0375
1.79	0.9633	0.0367
1.80	0.9641	0.0359
1.81	0.9649	0.0351
1.		

\mathbf{u}	$\mathbf{\Phi}(\mathbf{u})$	$\mathbf{\Phi}(-\mathbf{u})$
1.82	0.9656	0.0344
1.83	0.9664	0.0336
1.84	0.9671	0.0329
1.85	0.9678	0.0322
1.86	0.9686	0.0314
1.87	0.9693	0.0307
1.88	0.9699	0.0301
1.89	0.9706	0.0294
1.90	0.9713	0.0287
1.91	0.9719	0.0281
1.92	0.9726	0.0274
1.93	0.9732	0.0268
1.94	0.9738	0.0262
1.95	0.9744	0.0256
1.96	0.9750	0.0250
1.97	0.9756	0.0244
1.98	0.9761	0.0239
1.99	0.9767	0.0233
2.00	0.9772	0.0228
2.01	0.9778	0.0222
2.02	0.9783	0.0217
2.03	0.9788	0.0212
2.04	0.9793	0.0207
2.05	0.9798	0.0202
2.06	0.9803	0.0197
2.07	0.9808	0.0192
2.08	0.9812	0.0188
2.09	0.9817	0.0183
2.10	0.9821	0.0179
2.11	0.9826	0.0174
2.12	0.9830	0.0170
2.13	0.9834	0.0166
2.14	0.9838	0.0162
2.15	0.9842	0.0158
2.16	0.9846	0.0154
2.17	0.9850	0.0150
2.18	0.9854	0.0146

\mathbf{u}	$\mathbf{\Phi}(\mathbf{u})$	$\mathbf{\Phi}(-\mathbf{u})$		\mathbf{u}	$\mathbf{\Phi}(\mathbf{u})$	$\mathbf{\Phi}(-\mathbf{u})$	
2.19	0.9857		0.0143			2.56	

\mathbf{u}	$\boldsymbol{\Phi}(\mathbf{u})$	$\boldsymbol{\Phi}(-\mathbf{u})$
2.93	0.9983	0.0017
2.94	0.9984	0.0016
2.95	0.9984	0.0016
2.96	0.9985	0.0015
2.97	0.9985	0.0015
2.98	0.9986	0.0014
2.99	0.9986	0.0014
3.00	0.9987	0.0013
3.10	0.9990	0.0010
3.20	0.9993	0.0007
3.30	0.9995	0.0005
3.40	0.9997	0.0003
3.50	0.9998	0.0002
3.60	0.9998	0.0002
3.70	0.9999	0.0001
3.80	0.9999	0.0001
3.90	1.0000	0.0000
4.00	1.0000	0.0000

B. 3 The χ^{2} distribution (values x with $F_{\chi^{2}}(x)=0.500$ etc.)

d	0.500	0.600	0.700	0.800	0.900	0.950	0.975	0.990	0.995	0.999
1	0.45	0.71	1.07	1.6	2.71	3.8	5.02	6.63	7.88	10.83
2	1.39	1.83	2.41	3.22	4.61	5.99	7.38	9.21	10.60	13.82
3	2.37	2.95	3.6	4.6	6.25	7.81	9.35	11.34	12.84	16.27
4	3.3	4.04	4.88	5.99	78	9.	11.14	13.28	14.86	47
5	4.35	5.13	6.06	7.29	9.24	11.07	12.83	15.09	16.75	20.52
6	5.35	6.21	7.23	8.56	10.64	12.59	14.45	16.81	18.55	22.46
7	6.35	7.28	8.3	9.80	12.02	14.07	16.01	18.48	20.28	24.32
8	7.3	8.35	9.5	11.03	13.36	15.5	17.53	20.09	21.95	26.12
9	8.3	9.4	10.66	12.2	14.68	16.92	19.02	21.67	23.59	27.88
10	9.34	10.47	11.78	13.4	15.99	18.31	20.48	23.21	25.19	29.59
11	10.34	11.53	12.9	14.63	17.28	19.6	21.92	24.72	26.76	31.26
12	11	12	14	15	18.	21	23	26.22	28.30	1
13	12.3	13.64	15.1	16.98	19.81	22.36	24.74	27.69	29.82	34.53
14	13.34	14.69	16.22	18.15	21.06	23.68	26.12	29.14	31.32	36.12
15	14.3	15.73	17.3	19	22	25	27.49	30.58	32.80	37.70
16	15	16	18	20	23	26	28.85	32	34.27	39.25
17	16.3	17.	19.5	21	24.77	27.59	30.19	33.41	35.72	40.79
18	17.3	18.87	20.60	22.76	25.99	28.87	31.53	34.81	37.16	42.31
19	18.3	19.91	21.6	23.9	27.20	30.1	32.85	36.	38.58	43.82
20	19.3	20.9	22	25	28.	31	34.17	37.57	40.00	45.31
2	20.3	21	23	26.17	29.62	32.67	35.48	38.93	41.40	46.80
22	21.34	23.03	24.94	27.30	30.81	33.92	36.78	40.29	42.80	48.27
23	22.3	24.07	26.02	28.43	32.01	35.17	38.08	41.64	44.18	49.73
2	23	25	27	29	33.20	36.42	39.36	42.98	45.56	51.18
25	24.3	26.14	28.17	30.68	34.38	37.65	40.65	44.31	46.93	52.62
26	25.34	27.18	29.25	31.79	35.56	38.89	41.92	45.64	48.29	54.05
27	26.34	28.21	30.32	32.91	36.74	40.11	43.19	46.96	49.64	55.48
28	27.3	29.25	31.3	34.0	37.92	41.34	44.46	48.28	50.99	56.89
29	28.34	30.28	32.46	35.14	39.09	42.56	45.72	49.59	52.34	58.30
30	29.34	31.32	33.53	36.25	40.26	43.77	46.98	50.89	53.67	59.70
3	30.34	32.35	34.60	37.36	41.42	44.99	48.23	52.19	55.00	61.10
32	31.34	33.38	35.66	38.47	42.58	46.19	49.48	53.49	56.33	62.49
33	32.34	34.41	36.73	39.57	43.75	47.40	50.73	54.78	57.65	63.87
34	33.34	35.44	37.80	40.68	44.90	48.60	51.97	56.06	58.96	65.25
35	34.34	36.47	38.86	41.78	46.06	49.80	53.20	57.34	60.27	66.62

df	0.500	0.600	0.700	0.800	0.900	0.950	0.975	0.990	0.995	0.999
36	5.34	37.50	. 92	2.8	47.21	51.00	54.	58.62	61.58	67.99
37	36.34	8.53	40.9	43.98	48.3	52.	55	59.89	62.88	69.35
38	37.34	9.56	42.0	45.08	9.5	53.3	56.	61.16	64.18	70.70
39	38.34	40.59	43.1	46.17	0.66	54.57	58.12	62.43	5.48	2.05
40	39.34	41.62	44.16	47.27	51.81	55.76	59.34	63.69	66.77	3.40
41	40.34	42.65	45.22	48.36	52.95	56.94	60.56	64.95	68.05	4.7
42	41.34	43.68	46.2	49.	54.0	58.12	61.	6.2	9.3	76.08
43	42.34	4.7	47.3	50.5	55.2	59.3	62.	7.4	0.62	77.42
44	43.34	45.73	48.40	51.64	56.37	60.48	64.2	68.71	71.89	78.75
45	44.34	46.76	49.45	52.73	57.51	61.66	65.41	69.96	73.17	. 0
46	45.34	47.79	50.51	53.82	58.6	62.8	66.62	71.20	74.44	81.40
47	46.34	8.81	51.5	54.9	9.77	64.00	67.8	72.	75.70	82.72
48	47.34	49.84	52.6	55.9	0.9	65.1	69.	73.68	76.97	84.04
49	48.33	50.87	53.6	57.08	62.0	66.3	70.	74.92	78.23	85.35
50	49.33	51.89	54.72	58.16	63.17	67.50	71.42	76.15	79.49	8.66
51	50.33	52.92	55.78	59.25	64.30	68.6	72.62	77.39	80.75	87.97
52	51.33	53.9	56.8	60.3	5.4	69.8	73.8	78.62	82.00	89.27
53	52.33	54.97	57.8	61.4	66.5	70.9	75.	79.8	83.25	90.57
54	53.33	55.99	58.93	62.5	67.67	72.15	76.19	81.07	84.50	1.8
55	54.33	57.02	59.98	63.58	8.80	73.31	77.38	82.29	85.75	93.17
56	55.33	58.04	61.0	64.6	6.92	74.47	78.5	33.	86.9	94.46
57	56.33	59.06	62.0	65.7	71.04	75.6	79.7	84.7	88.24	5.7
58	57.33	60.09	63.1	66.8	72.1	76.7	80.	85.95	89.48	97.04
59	58.33	61.11	64.18	67.8	73.28	77.93	82.1	87.17	90.72	98.3
60	59.33	62.13	65.23	68.97	74.40	79.08	83	8.38	1.95	9.6
61	60.33	6.16	66.2	70.05	75.51	80.23	84.	9.5	3.1	100.
62	61.33	64.18	67.3	71.1	76.6	81.3	85.	0.8	4.4	102.
63	62.33	65.20	68.3	72.20	77.75	82.5	86.	92.0	95.65	103
64	63.33	66.23	69.42	73.28	78.86	83.68	88.00	93.2	96.88	104.7
65	64.33	67.25	70.46	74.35	79.97	84.82	89.18	94.42	98.1	105.9
66	65.33	68.27	71.51	75.42	81.09	85.96	90.35	95.63	99.33	107.2
67	66.33	69.29	72.5	76.50	82.20	87.11	91.52	96.83	100.55	108.53
68	67.33	70.32	73.60	77.57	83.31	88.25	92.69	98.03	101.78	109.79
69	68.33	71.34	74.64	78.64	84.42	89.39	93.86	99.23	103.00	111.06
70	69.33	72.36	75.69	79.71	85.53	90.53	95.02	100.43	104.21	112.32

B. 4 Student's t distribution (values x with $F_{\text {Student }}(x)=0.600$ etc.)

df	0.600	0.700	0.800	0.900	0.950	0.975	0.990	0.995	0.999
$\mathbf{1}$	0.32	0.73	1.38	3.08	6.31	12.71	31.82	63.66	318.31
$\mathbf{2}$	0.29	0.62	1.06	1.89	2.92	4.30	6.96	9.92	22.33
$\mathbf{3}$	0.28	0.58	0.98	1.64	2.35	3.18	4.54	5.84	10.2
$\mathbf{4}$	0.27	0.57	0.94	1.53	2.13	2.78	3.75	4.60	7.17
$\mathbf{5}$	0.27	0.56	0.92	1.48	2.02	2.57	3.36	4.03	5.89
$\mathbf{6}$	0.26	0.55	0.91	1.44	1.94	2.45	3.14	3.71	5.21
$\mathbf{7}$	0.26	0.55	0.90	1.41	1.89	2.36	3.00	3.50	4.79
$\mathbf{8}$	0.26	0.55	0.89	1.40	1.86	2.31	2.90	3.36	4.50
$\mathbf{9}$	0.26	0.54	0.88	1.38	1.83	2.26	2.82	3.25	4.30
$\mathbf{1 0}$	0.26	0.54	0.88	1.37	1.81	2.23	2.76	3.17	4.14
$\mathbf{1 1}$	0.26	0.54	0.88	1.36	1.80	2.20	2.72	3.11	4.02
$\mathbf{1 2}$	0.26	0.54	0.87	1.36	1.78	2.18	2.68	3.05	3.93
$\mathbf{1 3}$	0.26	0.54	0.87	1.35	1.77	2.16	2.65	3.01	3.85
$\mathbf{1 4}$	0.26	0.54	0.87	1.35	1.76	2.14	2.62	2.98	3.79
$\mathbf{1 5}$	0.26	0.54	0.87	1.34	1.75	2.13	2.60	2.95	3.73
$\mathbf{1 6}$	0.26	0.54	0.86	1.34	1.75	2.12	2.58	2.92	3.69
$\mathbf{1 7}$	0.26	0.53	0.86	1.33	1.74	2.11	2.57	2.90	3.65
$\mathbf{1 8}$	0.26	0.53	0.86	1.33	1.73	2.10	2.55	2.88	3.61
$\mathbf{1 9}$	0.26	0.53	0.86	1.33	1.73	2.09	2.54	2.86	3.58
$\mathbf{2 0}$	0.26	0.53	0.86	1.33	1.72	2.09	2.53	2.85	3.55
$\mathbf{2 1}$	0.26	0.53	0.86	1.32	1.72	2.08	2.52	2.83	3.53
$\mathbf{2 2}$	0.26	0.53	0.86	1.32	1.72	2.07	2.51	2.82	3.50
$\mathbf{2 3}$	0.26	0.53	0.86	1.32	1.71	2.07	2.50	2.81	3.48
$\mathbf{2 4}$	0.26	0.53	0.86	1.32	1.71	2.06	2.49	2.80	3.47
$\mathbf{2 5}$	0.26	0.53	0.86	1.32	1.71	2.06	2.49	2.79	3.45
$\mathbf{2 6}$	0.26	0.53	0.86	1.31	1.71	2.06	2.48	2.78	3.43
$\mathbf{2 7}$	0.26	0.53	0.86	1.31	1.70	2.05	2.47	2.77	3.42
$\mathbf{2 8}$	0.26	0.53	0.85	1.31	1.70	2.05	2.47	2.76	3.41
$\mathbf{2 9}$	0.26	0.53	0.85	1.31	1.70	2.05	2.46	2.76	3.40
$\mathbf{3 0}$	0.26	0.53	0.85	1.31	1.70	2.04	2.46	2.75	3.39
$\mathbf{3 5}$	0.26	0.53	0.85	1.31	1.69	2.03	2.44	2.72	3.34
$\mathbf{4 0}$	0.26	0.53	0.85	1.30	1.68	2.02	2.42	2.70	3.31
$\mathbf{5 0}$	0.25	0.53	0.85	1.30	1.68	2.01	2.40	2.68	3.26
$\mathbf{1 0 0}$	0.25	0.53	0.85	1.29	1.66	1.98	2.36	2.63	3.17
$\boldsymbol{\infty}$	0.25	0.52	0.84	1.28	1.64	1.96	2.33	2.58	3.09

B.5 Fisher's F distribution (values x with $F_{\text {Fisher }}(x)=0.90$)

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{1}$	39.86	49.50	53.59	55.83	57.24	58.20	58.91	59.44	59.86	60.19
$\mathbf{2}$	8.53	9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.38	9.39
$\mathbf{3}$	5.54	5.46	5.39	5.34	5.31	5.28	5.27	5.25	5.24	5.23
$\mathbf{4}$	4.54	4.32	4.19	4.11	4.05	4.01	3.98	3.95	3.94	3.92
$\mathbf{5}$	4.06	3.78	3.62	3.52	3.45	3.40	3.37	3.34	3.32	3.30
$\mathbf{6}$	3.78	3.46	3.29	3.18	3.11	3.05	3.01	2.98	2.96	2.94
$\mathbf{7}$	3.59	3.26	3.07	2.96	2.88	2.83	2.78	2.75	2.72	2.70
$\mathbf{8}$	3.46	3.11	2.92	2.81	2.73	2.67	2.62	2.59	2.56	2.54
$\mathbf{9}$	3.36	3.01	2.81	2.69	2.61	2.55	2.51	2.47	2.44	2.42
$\mathbf{1 0}$	3.29	2.92	2.73	2.61	2.52	2.46	2.41	2.38	2.35	2.32
$\mathbf{1 1}$	3.23	2.86	2.66	2.54	2.45	2.39	2.34	2.30	2.27	2.25
$\mathbf{1 2}$	3.18	2.81	2.61	2.48	2.39	2.33	2.28	2.24	2.21	2.19
$\mathbf{1 3}$	3.14	2.76	2.56	2.43	2.35	2.28	2.23	2.20	2.16	2.14
$\mathbf{1 4}$	3.10	2.73	2.52	2.39	2.31	2.24	2.19	2.15	2.12	2.10
$\mathbf{1 5}$	3.07	2.70	2.49	2.36	2.27	2.21	2.16	2.12	2.09	2.06
$\mathbf{1 6}$	3.05	2.67	2.46	2.33	2.24	2.18	2.13	2.09	2.06	2.03
$\mathbf{1 7}$	3.03	2.64	2.44	2.31	2.22	2.15	2.10	2.06	2.03	2.00
$\mathbf{1 8}$	3.02	2.62	2.42	2.29	2.20	2.13	2.08	2.04	2.00	1.98
$\mathbf{1 9}$	3.01	2.61	2.40	2.27	2.18	2.11	2.06	2.02	1.98	1.96
$\mathbf{2 0}$	3.00	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.96	1.94
$\mathbf{2 1}$	2.98	2.57	2.36	2.23	2.14	2.08	2.02	1.98	1.95	1.92
$\mathbf{2 2}$	2.97	2.56	2.35	2.22	2.13	2.06	2.01	1.97	1.93	1.90
$\mathbf{2 3}$	2.96	2.55	2.34	2.21	2.11	2.05	1.99	1.95	1.92	1.89
$\mathbf{2 4}$	2.95	2.54	2.33	2.19	2.10	2.04	1.98	1.94	1.91	1.88
$\mathbf{2 5}$	2.94	2.53	2.32	2.18	2.09	2.02	1.97	1.93	1.89	1.87
$\mathbf{2 6}$	2.93	2.52	2.31	2.17	2.08	2.01	1.96	1.92	1.88	1.86
$\mathbf{2 7}$	2.92	2.51	2.30	2.17	2.07	2.00	1.95	1.91	1.87	1.85
$\mathbf{2 8}$	2.92	2.50	2.29	2.16	2.06	2.00	1.94	1.90	1.87	1.84
$\mathbf{2 9}$	2.91	2.50	2.28	2.15	2.06	1.99	1.93	1.89	1.86	1.83
$\mathbf{3 0}$	2.90	2.49	2.28	2.14	2.05	1.98	1.93	1.88	1.85	1.82
$\mathbf{3 1}$	2.90	2.48	2.27	2.14	2.04	1.97	1.92	1.88	1.84	1.81
$\mathbf{3 2}$	2.89	2.48	2.26	2.13	2.04	1.97	1.91	1.87	0.84	1.81
$\mathbf{3 3}$	2.89	2.47	2.26	2.12	2.03	1.96	1.91	1.86	1.83	1.80
$\mathbf{3 4}$	2.88	2.47	2.25	2.12	2.02	1.96	1.90	1.86	1.82	1.79
$\mathbf{3 5}$	2.88	2.46	2.25	2.11	2.02	1.95	1.90	1.85	1.82	1.79

B. 6 Fisher's F distribution (values x with $F_{\text {Fisher }}(x)=0.95$)

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{1}$	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88
$\mathbf{2}$	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40
$\mathbf{3}$	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79
$\mathbf{4}$	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96
$\mathbf{5}$	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74
$\mathbf{6}$	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06
$\mathbf{7}$	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64
$\mathbf{8}$	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35
$\mathbf{9}$	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14
$\mathbf{1 0}$	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98
$\mathbf{1 1}$	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85
$\mathbf{1 2}$	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75
$\mathbf{1 3}$	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67
$\mathbf{1 4}$	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60
$\mathbf{1 5}$	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54
$\mathbf{1 6}$	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49
$\mathbf{1 7}$	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45
$\mathbf{1 8}$	4.43	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41
$\mathbf{1 9}$	4.41	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38
$\mathbf{2 0}$	4.38	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35
$\mathbf{2 1}$	4.35	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32
$\mathbf{2 2}$	4.33	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30
$\mathbf{2 3}$	4.31	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27
$\mathbf{2 4}$	4.29	3.40	3.01	2.78	2.62	2.51	2.42	2.36	4.62	2.25
$\mathbf{2 5}$	4.27	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24
$\mathbf{2 6}$	4.25	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22
$\mathbf{2 7}$	4.24	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20
$\mathbf{2 8}$	4.22	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19
$\mathbf{2 9}$	4.21	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18
$\mathbf{3 0}$	4.20	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16
$\mathbf{3 1}$	4.18	3.30	2.91	2.68	2.52	2.41	2.32	2.25	2.20	2.15
$\mathbf{3 2}$	4.17	3.29	2.90	2.67	2.51	2.40	2.31	2.24	2.19	2.14
$\mathbf{3 3}$	4.16	3.28	2.89	2.66	2.50	2.39	2.30	2.23	2.18	2.13
$\mathbf{3 4}$	4.15	3.28	2.88	2.65	2.49	2.38	2.29	2.23	2.17	2.12
$\mathbf{3 5}$	4.15	3.27	2.87	2.64	2.49	2.37	2.29	2.22	2.16	2.11

B. $7 \quad$ Fisher's F distribution (values x with $F_{\text {Fisher }}(x)=0.99$)

		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$	4052	5000	5403	5625	5764	5859	5928	5981	6022	6056
$\mathbf{2}$	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39	99.40
$\mathbf{3}$	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35	27.23
$\mathbf{4}$	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66	14.55
$\mathbf{5}$	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.05
$\mathbf{6}$	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87
$\mathbf{7}$	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62
$\mathbf{8}$	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81
$\mathbf{9}$	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26
$\mathbf{1 0}$	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85
$\mathbf{1 1}$	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54
$\mathbf{1 2}$	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30
$\mathbf{1 3}$	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10
$\mathbf{1 4}$	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03	3.94
$\mathbf{1 5}$	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80
$\mathbf{1 6}$	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69
$\mathbf{1 7}$	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68	3.59
$\mathbf{1 8}$	8.30	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51
$\mathbf{1 9}$	8.22	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43
$\mathbf{2 0}$	8.13	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37
$\mathbf{2 1}$	8.05	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31
$\mathbf{2 2}$	7.98	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26
$\mathbf{2 3}$	7.91	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21
$\mathbf{2 4}$	7.85	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17
$\mathbf{2 5}$	7.80	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.22	3.13
$\mathbf{2 6}$	7.75	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09
$\mathbf{2 7}$	7.71	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15	3.06
$\mathbf{2 8}$	7.67	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03
$\mathbf{2 9}$	7.63	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09	3.00
$\mathbf{3 0}$	7.59	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98
$\mathbf{3 1}$	7.56	5.36	4.48	3.99	3.67	3.45	3.28	3.15	3.04	2.96
$\mathbf{3 2}$	7.53	5.34	4.46	3.97	3.65	3.43	3.26	3.13	3.02	2.93
$\mathbf{3 3}$	7.50	5.31	4.44	3.95	3.63	3.41	3.24	3.11	3.00	2.91
$\mathbf{3 4}$	7.47	5.29	4.42	3.93	3.61	3.39	3.22	3.09	2.98	2.89
$\mathbf{3 5}$	7.45	5.27	4.40	3.91	3.59	3.37	3.20	3.07	2.96	2.88
$\mathbf{1 3}$										

B. 8 Wilcoxon's test for one set of observations

\mathbf{n}	0.005	0.010	0.025	0.050
$\mathbf{5}$	-	-	-	0
$\mathbf{6}$	-	-	0	2
$\mathbf{7}$	-	0	2	3
$\mathbf{8}$	0	1	3	5
$\mathbf{9}$	1	3	5	8
$\mathbf{1 0}$	3	5	8	10
$\mathbf{1 1}$	5	7	10	13
$\mathbf{1 2}$	7	9	13	17
$\mathbf{1 3}$	9	12	17	21
$\mathbf{1 4}$	12	15	21	25
$\mathbf{1 5}$	15	19	25	30
$\mathbf{1 6}$	19	23	29	35
$\mathbf{1 7}$	23	27	34	41
$\mathbf{1 8}$	27	32	40	47
$\mathbf{1 9}$	32	37	46	53
$\mathbf{2 0}$	37	43	52	60
$\mathbf{2 1}$	42	49	58	67
$\mathbf{2 2}$	48	55	65	75
$\mathbf{2 3}$	54	62	73	83
$\mathbf{2 4}$	61	69	81	91
$\mathbf{2 5}$	68	76	89	100
$\mathbf{2 6}$	75	84	98	110
$\mathbf{2 7}$	83	92	107	119

\mathbf{n}	0.005	0.010	0.025	0.050
$\mathbf{2 8}$	91	101	116	130
$\mathbf{2 9}$	100	110	126	140
$\mathbf{3 0}$	109	120	137	151
$\mathbf{3 1}$	118	130	147	163
$\mathbf{3 2}$	128	140	159	175
$\mathbf{3 3}$	138	151	170	187
$\mathbf{3 4}$	148	162	182	200
$\mathbf{3 5}$	159	173	195	213
$\mathbf{3 6}$	171	185	208	227
$\mathbf{3 7}$	182	198	221	241
$\mathbf{3 8}$	194	211	235	256
$\mathbf{3 9}$	207	224	249	271
$\mathbf{4 0}$	220	238	264	286
$\mathbf{4 1}$	233	252	279	302
$\mathbf{4 2}$	247	266	294	319
$\mathbf{4 3}$	261	281	310	336
$\mathbf{4 4}$	276	296	327	353
$\mathbf{4 5}$	291	312	343	371
$\mathbf{4 6}$	307	328	361	389
$\mathbf{4 7}$	322	345	378	407
$\mathbf{4 8}$	339	362	396	426
$\mathbf{4 9}$	355	379	415	446
$\mathbf{5 0}$	373	397	434	466

B. 9 Wilcoxon's test for two sets of observations, $\alpha=5 \%$

$\mathbf{m}=\mathbf{1}$		$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
$\mathbf{n}=\mathbf{1}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\mathbf{2}$	2	2	2	2	3	3	3	4	4	4	4	5	5	6	6
$\mathbf{3}$	5	5	6	6	7	8	8	9	10	10	11	11	12	13	13
$\mathbf{4}$	9	9	10	11	12	13	14	15	16	17	18	19	20	21	22
$\mathbf{5}$	14	15	16	17	19	20	21	23	24	26	27	28	30	31	33
$\mathbf{6}$	20	21	23	24	26	28	29	31	33	35	37	38	40	42	44
$\mathbf{7}$	27	28	30	32	34	36	39	41	43	45	47	49	52	54	56
$\mathbf{8}$	35	37	39	41	44	46	49	51	54	56	59	62	64	67	69
$\mathbf{9}$	44	46	49	51	54	57	60	63	66	69	72	75	78	81	84
$\mathbf{1 0}$	54	56	59	62	66	69	72	75	79	82	86	89	92	96	99
$\mathbf{1 1}$	65	67	71	74	78	82	85	89	93	97	100	104	108	112	116
$\mathbf{1 2}$	77	80	83	87	91	95	99	104	108	112	116	120	125	129	133
$\mathbf{1 3}$	90	93	97	101	106	110	115	119	124	128	133	138	142	147	152
$\mathbf{1 4}$	104	108	112	116	121	126	131	136	141	146	151	156	161	166	171
$\mathbf{1 5}$	119	123	127	132	138	143	148	153	159	164	170	175	181	186	192
$\mathbf{1 6}$	135	139	144	150	155	161	166	172	178	184	190	196	201	207	213
$\mathbf{1 7}$	152	156	162	168	173	179	186	192	198	204	210	217	223	230	236
$\mathbf{1 8}$	170	175	180	187	193	199	206	212	219	226	232	239	246	253	259
$\mathbf{1 9}$	190	194	200	207	213	220	227	234	241	248	255	262	270	277	284
$\mathbf{2 0}$	210	214	221	228	235	242	249	257	264	272	279	287	294	302	310
$\mathbf{2 1}$	231	236	242	250	257	265	272	280	288	296	304	312	320	328	336
$\mathbf{2 2}$	253	258	265	273	281	289	297	305	313	321	330	338	347	355	364
$\mathbf{2 3}$	276	281	289	297	305	313	322	330	339	348	357	366	374	383	392
$\mathbf{2 4}$	300	306	313	322	330	339	348	357	366	375	385	394	403	413	422
$\mathbf{2 5}$	325	331	339	348	357	366	375	385	394	404	414	423	433	443	453

C Explanation of symbols

A, B, C	events
Ω	sample space
P	probability function, significance probability
$P(A \mid B)$	conditional probability of A given B
\cap, \cup	intersection, union
\wedge, \vee	and, or
$A \subseteq \Omega$	A is a subset of Ω
$\omega \in \Omega$	ω belongs to Ω
СA	complement of the set A
$A \backslash B$	difference of the sets A and B (" A minus B ")
$f: \Omega \rightarrow \mathbb{R}$	f is a map from Ω into \mathbb{R}
:=	equals by definition
$\|x\|$	absolute value of x (e.g. $\|-2\|=2$)
$\mathbb{N}, \mathbb{Z}, \mathbb{R}$	the set of natural, integral, real numbers
\varnothing	the empty set
$[0, \infty[$	the interval $\{x \in \mathbb{R} \mid x \geq 0\}$
X, Y	random variables
$E(X)$	the expected value of X
$\operatorname{var}(X)$	the variance of X
$\operatorname{Cov}(X, Y)$	the covariance of X and Y
μ	expected value
σ^{2}	variance
σ	standard deviation
Bin	binomial distribution
Pois	Poisson distribution
Geo	geometrical distribution
HG	hypergeometrical distribution
Mult	multinomial distribution
NB	negative binomial distribution
Exp	exponential distribution
N	normal distribution
s^{2}	empirical variance
s	empirical standard deviation
$F(x)$	distribution function
$f(x)$	density function
$\Phi(x)$	distribution function of standard normal distribution
$\varphi(x)$	density function of standard normal distribution
n	number of observations or tries
λ	intensity (in a Poisson process)
R^{2}	determination coefficient

$\rho \quad$ correlation coefficient
\bar{x}, \bar{y} mean value
$d f$ number of degrees of freedom

Download free ebooks at bookboon.com

Index

accept, 29
addition formula, 24
addition formula for normal distribution, 50
alternative hypothesis, 29
analysis of variance, 60
ANOVA, 60
automobiles, 36
auxiliary hypothesis, 59
binomial coefficient, 16
binomial distribution, 30
black balls, 41
Bortkiewicz, Ladislaus von, 69
cabinet, 42
Central Limit Theorem, 26
Chebyshev's inequality, 26
chi-squared, 63
chi-squared distribution, 50
city council, 42
conditional probability, 12
contingency table, 70
continuous random variable, 20
correlation coefficient, 24
covariance, 24
cumulative probabilities, 32
declaring variable, 79
density, 20
density function, 20
determination coefficient, 81
discrepancy, 64
discrete random variable, 19
disjoint events, 12
distribution function, 18
distribution-free test, 74
division into possible causes, 13
empirical correlation coefficient, 29
empirical covariance, 29
empirical standard deviation, 28
empirical variance, 28
equality of distribution, 63
errors (of type I and II), 30
event, 12
expected number, 64
expected value, 21,24
exponential distribution, 45
F distribution, 52
Fisher's exact test, 73
Fisher's F, 52
Fisher-Behrens problem, 57
French Open, 13
generalized binomial coefficients, 17
geometrical distribution, 39
Gesetz der kleinen Zahlen, 69
goodness of fit, 63
Green Party, 34
hypergeometrical distribution, 41
inclusion-exclusion, 14
independent events, 14
independent random variables, 20
intensity, 35, 45
interquartile range, 28
Law of Large Numbers, 26
linear regression, 79
lower quartile, 28
marginal density, 21
mean, 28
mean value, 28
median, 27
moment of extraordinary beauty, 27
multinomial coefficients, 17
multinomial distribution, 43
multiplication formula, 24
negative binomial distribution, 44
non-parametric test, 74
normal distribution, 46
normed sum, 26
null hypothesis, 29
observed number, 64
parameter, 30
Pascal's triangle, 17
Pearson's test, 63
pin diagram, 19
point probability, 19
Poisson distribution, 35
pooled variance, 57
predicted value, 80
probability function, 12
probability of failure, 30
probability of success, 30
probability space, 12
Prussian cavalry, 68
quartile, 28
random variables, 18
random vector, 21
rank, 74
red balls, 41
regression, 79
reject, 29
remainder term, 79
residual, 80
response variable, 79
sample point, 12
sample space, 12
school class, 15
significance level, 29
significance probability, 29
simple linear regression, 79
simultaneous density, 21
simultaneous distribution function, 21
Skoda, 36
spontaneous event, 35, 45
standard deviation, 22
standard normal distribution, 47
standardized residuals, 65, 71
strength, 30
Student's t, 51
t distribution, 51
test, 29
throw of a dice, 12
toss of a coin, 27
two-times-two table, 73
type I and II, 30
unbiased estimator, 33
upper quartile, 28
urn, 41
variance, 22,24
variance between samples, 60
variance within samples, 60
Wilcoxon's test, 74

